Имитационное моделирование экономических процессов: характеристика и основные виды.

  • Емельянов А.А., Власова Е.А., Дума Р.В. Имитационное моделирование экономических процессов. М.: Финансы и статистика, 2002.
  • Александровский Н.М., Егоров С.В., Кузин Р.Е. Адаптивные системы управления сложными технологическими процессами. М.: НРЕ, 1973.
  • Бусленко Н.П. Моделирование сложных систем. М.: Наука, 1978.
  • ГОСТ 24.702 ? 85. Эффективность АСУ. Основные положения. ? М.: Издательство стандартов, 1985.
  • Емельянов А.А., Власова Е.А., Дума Р.В. Имитационное моделирование в экономических информационных системах. Учебное пособие. - М.: МЭСИ, 1996.
  • Емельянов А.А. Техника разработки и анализа управляемых программ. М.: Издательство «АтомИнформ», 1984.
  • Емельянов А.А. Системы имитационного моделирования дискретных и дискретно-непрерывных процессов (ПИЛИГРИМ). 10785338.00027-01 92 01-ЛУ. Тверь: Мобильность, 1992.
  • Липаев В.В., Яшков С.Ф. эффективность методов организации вычислительного процесса АСУ. М.: Финансы и статистика, 1975.
  • Назин А.В., Позняк А.С. Адаптивный выбор вариантов. М.: Наука, 1986.
  • Прицкер А. введение в имитационное моделирование и язык СЛАМ П. М.: Мир, 1987.
  • Роберте Ф.С. Дискретные математические модели с приложениями к социальным биологическим и экологическим задачам. М.: Наука, 1986.
  • Шеннон Р. имитационное моделирование систем: наука и искусство. М.: Мир, 1978.
  • Имитационное моделирование случайных факторов [Текст] : метод. указания к практическим занятиям по курсу «Имитационное моделирование экономических процессов» / Воронеж. гос. технол. акад.; сост. А. С. Дуб-ровин, М. Е. Семенов. Воронеж, 2005. 32 с.
  • Афанасьев, М. Ю. Исследование операций в экономике: модели, задачи, решения [Текст] : учеб. пособие / М. Ю. Афанасьев, Б. П. Суворов. – М. : ИНФРА-М, 2003. – 444 с. (Серия. Высшее образование).
  • Варфоломеев, В. И. Алгоритмическое моделирование элементов экономи-ческих систем [Текст] : практикум: учеб. пособие / В. И. Варфоломеев, С. В. Назаров; Под ред. С. В. Назарова. – М. : Финансы и статистика, 2004. – 264 с.
  • Емельянов, А. А. Имитационное моделирование в экономических инфор-мационных системах [Текст] / А. А. Емельянов, Е. А. Власова, Р. В. Дума; Под ред. А. А. Емельянова. – М. : Финансы и статистика, 2002.
  • Максимей, И. В. Имитационное моделирование на ЭВМ [Текст] / И. В. Максимей. – М. : Радио и связь, 1988. – 232 с.
  • Нейлор, Т. Машинные имитационные эксперименты с моделями экономи-ческих систем [Текст] / Т. Нейлор. – М. : Мир, 1975.
  • Фомин, Г. П. Системы и модели массового обслуживания в коммерческой деятельности [Текст] : учеб. пособие / Г. П. Фомин. – М. : Финансы и ста-тистика, 2000.
  • Бусленко, Н. П. Моделирование сложных систем [Текст] / Н. П. Бусленко. – М. : Наука, 1978.
  • Новиков, О. А. Прикладные вопросы теории массового обслуживания [Текст] / О. А. Новиков, С. И. Петухов. – М. : Советское радио, 1969. – 400 с.
  • Риордан, Дж. Вероятностные системы обслуживания [Текст] / Дж. Риор-дан. – М. : Связь, 1966. – 184 с.
  • Советов, Б. Я. Моделирование систем [Текст] : учебник для вузов / Б. Я. Советов, С. А. Яковлев. – М. : Высшая школа, 1998.
  • Шеннон, Р. Имитационное моделирование систем – искусство и наука [Текст] / Р. Шеннон. – М. : Мир, 1978.
  • Хемди А. Таха Глава 18. Имитационное моделирование // Введение в исследование операций = Operations Research: An Introduction. - 7-е изд. - М.: «Вильямс», 2007.
  • Строгалев В. П., Толкачева И. О. Имитационное моделирование. - МГТУ им. Баумана, 2008.
  • Лоу А., Кельтон В. Имитационное моделирование . СПб.: Издательство:Питер, 2004. – 848 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Университет международного бизнеса.

На тему: Имитационное моделирование в экономике

Выполнил студент гр. Экономика

Тажибаев Ермек

Алматы 2009

План

Введение

1. Определение понятия «имитационное моделирование»

2. Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности

3. Метод Монте-Карло как разновидность имитационного моделирования

4. Пример. Оценка геологических запасов

Заключение

Введение

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории - неограниченно большое) число факторов. Но и у них - свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб.

Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.

Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения - если не оптимальные, то почти оптимальные.

1. Определение понятия «имитационное моделирование»

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:

В первой - под имитационной моделью понимается математическая модель в классическом смысле;

Во второй - этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;

В третьей - предполагают, что имитационная модель отличается от обычной математической более детальным описанием, но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится;

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения - если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы:

1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.

2. Из множества законов, управляющих поведением системы, выбираются те, влияние которых существенно при поиске ответов на поставленные вопросы.

3. В пополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании.

Критерием адекватности модели служит практика.

Трудности при построении математической модели сложной системы:

Если модель содержит много связей между элементами, разнообразные нелинейные ограничения, большое число параметров и т. д.

Реальные системы зачастую подвержены влиянию случайных различных факторов, учет которых аналитическим путем представляет весьма большие трудности, зачастую непреодолимые при большом их числе;

Возможность сопоставления модели и оригинала при таком подходе имеется лишь в начале.

Эти трудности и обуславливают применение имитационного моделирования.

Оно реализуется по следующим этапам:

1. Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.

2. Осуществляется декомпозиция системы на более простые части-блоки.

3. Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.

4. В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.

5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

2. Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности

Современный этап развития нефтяной и газовой промышленности характеризуется усложнением связей и взаимодействия природных, экономических, организационных, экологических и прочих факторов производства как на уровне отдельных предприятий и нефтегазодобывающих районов, так и на общеотраслевом уровне. В нефтегазовой промышленности производство отличается длительными сроками, эшелонированием производственно - технологического процесса во времени (поиски и разведка, разработка и обустройство, добыча нефти, газа и конденсата), наличием лаговых смещений и запаздываний, динамичностью используемых ресурсов и другими факторами, значения многих из которых носят вероятностный характер.

Значения этих факторов систематически изменяются вследствие ввода в эксплуатацию новых месторождений, а также не подтверждения ожидаемых результатов по находящимся в разработке. Это вынуждает предприятия нефтегазовой промышленности периодически пересматривать планы воспроизводства основных фондов и перераспределять ресурсы с целью оптимизации результатов производственно - хозяйственной деятельности. При составлении планов существенную помощь лицам, готовящим проект хозяйственного решения, может оказать использование методов математического моделирования, в том числе имитационных. Суть этих методов заключается в многократном воспроизводстве вариантов плановых решений с последующим анализом и выбором наиболее рационального из них по установленной системе критериев. С помощью имитационной модели можно создать единую структурную схему, интегрирующую функциональные элементы управления (стратегическое, тактическое и оперативное планирование) по основным производственным процессам отрасли (поиски, разведка, разработка, добыча, транспорт, нефтегазопереработка).

3. Метод Монте-Карло как разновиднос ть имитационного моделирования

Датой рождения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опубликованы в 1955--1956гг.

Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины" вручную--очень трудоемкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом.

Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».

Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс -- явно немарковскпй, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).

В сущности, методом Монте-Карло может быть решена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 -- (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб--за попадание, решку -- за «промах». Опытсчитается«удачным», если хотя бы на одной из монетвыпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.

Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.

Рассмотрим простой пример иллюстрирующий метод.

Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S. Это может быть произвольная фигура с криволинейной границей, заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и предположим, что она вся расположена внутри единичного квадрата.

Выберем внутри квадрата N случайных точек. Обозначим через F число точек, попавших при этом внутрь S. Геометрически очевидно, что площадь S приближенно равна отношению F/N. Чем больше N, тем больше точность этой оценки.

Две особенности метода Монте-Карло.

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая особенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - некоторая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чисел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значения случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

2.С помощью генератора случайных чисел выбрать случайное десятичное число в пределах от 0 до 1 (с требуемым числом разрядов).

3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбранному случайному числу, до пересечения с кривой распределения вероятностей.

4. Опустить из этой точки пересечения перпендикуляр на ось абсцисс.

б. Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количество звонков на телефонную станцию в течение 1 минуты соответствует следующему распределению:

Кол - во звонков Вероятность Кумулятивная вероятность О 0,10 0,10

Предположим, что мы хотим провести мысленный эксперимент для пяти периодов времени.

Построим график распределения кумулятивной вероятности. С помощью генератора случайных чисел получим пять чисел, каждое из которых используем для определения количества звонков в данном интервале времени.

Период времени Случайное число Количество звонков

Взяв еще несколько таких выборок, можно убедиться в том, что если используемые числа действительно распределены равномерно, то каждое из значений исследуемой величины будет появляться с такой же частотой, как ирреальном мире», и мы получим результаты, типичные для поведения исследуемой системы.

Вернемся к примеру. Для расчета нам нужно было выбирать случайные точки в единичном квадрате. Как это сделать физически?

Представим такой эксперимент. Рис.1. (в увеличенном масштабе) с фигурой S и квадратом повешен на стену в качестве мишени. Стрелок, находившийся на некотором расстоянии от стены, стреляет N раз, целясь в центр квадрата.

Конечно, все пули не будут ложиться точно в центр: они пробьют на мишени N случайных точек. Можно ли по этим точкам оценить площадь S.

Ясно, что при высокой квалификации стрелка результат опыта будет очень плохим, так как почти все пули будут ложиться вблизи центра и попадут в S.

Нетрудно понять, что наш метод вычисления площади будет справедлив только тогда, когда случайные точки будут не просто «случайными», а еще и «равномерно разбросанными» по всему квадрату.

В задачах исследования операций метод Монте-Карло применяется в трех основных ролях:

1) при моделировании сложных, комплексных операций, где присутствует много взаимодействующих случайных факторов;

2) при проверке применимости более простых, аналитических методов и выяснении условий их применимости;

3) в целях выработки поправок к аналитическим формулам типа «эмпирических формул» в технике.

4. Пример . Оценка геологических запасов

Для оценки величины извлекаемых запасов необходимо, прежде всего, определить величину суммарных или геологических запасов.

Анализ структурных ловушек.

Для оценки содержания в структурной ловушке нефти и/или газа, поисковые и промысловые геологи и геофизики должны изучить характер структурной ловушки. Такое исследование необходимо для определения возможной величины геологических запасов. Область изменения запасов определяется комбинацией следующих оценочных показателей: объем осадочных пород (RV), пористости (F), перовой водонасыщенности (Sw), эффективная мощность (NP) g.

Определение вероятных значений параметра.

На этом этапе геологи должны оценить значение вероятностей для параметров, используемых при подсчете геологических запасов. Каждому параметру приписываются интервальные значения вероятностей, исходя из экспертных оценок геологов

Анализ графиков вероятности.

Графики накопленной вероятности. Непрерывная кривая представляет вероятность того, что величина рассматриваемого параметра будет «равна или больше» чем величина в той точке горизонтальной оси, которая пересекается вертикальной линией, проектируемой от кривой, с перпендикуляром к вертикальной оси для любых значений от 0 до 100 %. Кривая построена по данным гистограмм, которые показаны как заштрихованные столбики. Гистограммы представляют собой экспертную оценку поисковых и промысловых геологов и геофизиков, которые обеспечивают информацию в следующей форме:

По нашему мнению, вероятность того, что объем пород залежи находиться в интервале от 0 до 390 тыс. футов составляет 10%;

По нашей оценке вероятность того, что объем пород равен от 380 до 550 куб. футов, составляет 15% и так далее.

Эти оценки геологов накапливаются, и в итоге получается обобщенная кривая вероятности. На основании этой кривой можно экстраполировать значения ожидаемых вероятностей для изучаемых параметров.

Подсчет геологических запасов.

Объем геологических запасов вычисляется с помощью следующей формулы:

RVxFx(l-Sw)x NPx --, где Fv - коэффициент приведения нефти к поверхностным условиям.

Использование средних величин для получения приблизительной оценки геологических запасов.

При оценке приблизительного количества нефти в месторождении будем использовать следующие значения параметров:

Среднее значение объема пород составляет 1,35 млн. акрофутов (1 акрофут = 7760 баррелей или около 1230 м3)

Средняя пористость - 17%

Средняя водонасыщенность - 20%

Средняя эффективная мощность - 75%

Коэффициент приведения - 1,02 (в пластовых условиях нет свободного газа). Теперь подставим эти значения в формулу

(1,35 х 1 0) х (1 7%) х (1 - 20%) х (75%) х (,т.е.:1350000x0,17x0,8x0,75x0,98) = 134946 акрофутов или 134946x7760 = 1047413760,

т. е. приблизительно 1,047 млрд. баррелей нефти (165 млн. м3, 141 млн.т).

Более распространенный способ: метод Монте-Карло.

Прежде всего, необходимо построить гистограммы и кривые накопленной вероятности для каждого параметра.

Для каждой из этих кривых случайным образом необходимо выбрать точку, соответствующую вероятности от 0 до 100 %. После этого надо подставить значение параметра, соответствующее этой вероятности в уравнение. Затем можно подсчитать геологические запасы при этих значениях параметров и вычислить полную вероятность

Например:

Для 50%-ой накопленной вероятности имеем 25%-ю вероятность того, что объем пород составит 690000 акрофутов

Для 20%-ой накопленной вероятности имеем 35%-ю вероятность того, что пористость составит 21%

Для 25%-ой накопленной вероятности имеем 25%-ю вероятность того, что водосодержание равно 33%

80%-я накопленная вероятность показывает 32%-ю вероятность того, что эффективная мощность составит 74%.

Коэффициент приведения нефти к поверхностным условиям принимаем равным 1,02.

Используя эти значения, вычислим геологические запасы:

(0,69 х 1 0) х (2 1 %) х (l - 33%) х (74%) х ---- решив, получим приблизительно:

521 млн. баррелей нефти (82 млн.м3, 70 млн.т). Результат этого вычисления значительно меньше, чем при использовании средних значений параметров. Нам нужно узнать вероятность этого результата. Для определения вероятности того, что геологические запасы составят 521 млн. баррелей нефти, вычислим полную вероятность:

0,25 х 0,35 х 0,20 х 0,35 х 1,0 = 0,006125,т.е. вероятность равна 0.6125% - не очень хорошая!

Эта процедура повторяется многократно, для чего мы использовали программу, составленную для ЭВМ. Это дает нам разумное вероятностное распределение геологических запасов. В результате выполнения программы прогнозировали объем геологических запасов нефти: наиболее вероятно, что объем нефти составит 84658 акрофутов или около 88,5 млн.тонн.

Использование распределения накопленной вероятности.

На следующем этапе, используя график, необходимо выбрать несколько оценок вместе с их вероятностями. Для каждого из этих значений вычисляются: динамика добычи, варианты проекта разработки. Эти расчеты могут затем использоваться для оценки капитальных эксплуатационных затрат для каждого значения запасов, выбранных из графика. Затем для каждого значения запасов анализируются экономические показатели. По прошествии некоторого времени, и после того, как будет пробурено некоторое количество скважин, рассчитывается коэффициент успешности по формуле.

Коэффициент успешности = кол-во скважин давш. нефть\ кол-во пробур. скважин

За период в течение нескольких лет составляется график вероятности достижения успеха. Например, для условной площади, график коэффициента успешности составлен по прошествии девяти лет эксплуатации. Через соответствующие значения успешности проводятся условные линии, затем через их центры проводится огибающая кривая. Крайние точки этих линий соответствует максимальному уровню успешности, а центральная кривая соответствует наиболее вероятному уровню достижения успеха Значения вероятностей определяется на основе субъективных суждений промысловых геологов.

Аналогично определяется уровень запасов на одну скважину. С помощью коэффициента успешности и средних запасов на одну скважину оценивается вероятность достижения определенного уровня запасов, необходимая для составления программы бурения и определения количества необходимых скважин.

Заключение

Основным недостатком аналитических моделей является то, что они неизбежно требуют каких-то допущений, в частности, о «марковости» процесса. Приемлемость этих допущений далеко не всегда может быть оценена без контрольных расчетов, а производятся они методом Монте-Карло. Образно говоря, метод Монте-Карло в задачах исследования операций играет роль своеобразного ОТК. Статистические модели не требуют серьезных допущений и упрощений. В принципе, в статистическую модель «лезет» что угодно -- любые законы распределения, любая сложность системы, множественность ее состояний. Главный же недостаток статистических моделей -- их громоздкость и трудоемкость. Огромное число реализации, необходимое для нахождения искомых параметров с приемлемой точностью, требует большого расхода машинного времени. Кроме того, результаты статистического моделирования гораздо труднее осмыслить, чем расчеты по аналитическим моделям, и соответственно труднее оптимизировать решение (его приходится «нащупывать» вслепую). Правильное сочетание аналитических и статистических методов в исследовании операций -- дело искусства, чутья и опыта исследователя. Нередко аналитическими методами удается описать какие-то «подсистемы», выделяемые в большой системе, а затем из таких моделей, как из «кирпичиков», строить здание большой, сложной модели.

Список используемой литературы

1. Вентцель Е.С. «Исследование операций», Москва «Советское радио» 1972

2. Соболь И.М. «Метод Монте-Карло», Москва «Наука»,1985 г.

3. «Экономико-математические методы и прикладные модели», под ред. Федосеева В.В., Москва «Юнити» 2001 г.

Подобные документы

    Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа , добавлен 23.12.2013

    Статистическая модель случайного процесса. Численный метод Монте-Карло. Типы имитации, ее достоинства и возможности. Простая имитационная модель системы обработки документов. Использование для моделирования языка Siman. Его основные моделирующие блоки.

    презентация , добавлен 22.10.2014

    Расчет экономического эффекта работы банка. Имитационное моделирование на основании предварительно установленных зависимостей. Функция распределения экспоненциального закона. Корректировка времени обслуживания клиентов у касс и продвижения очереди.

    контрольная работа , добавлен 03.10.2008

    Расчет экономического эффекта работы банка. Алгоритм имитационного моделирования работы кассового зала. Функция распределения экспоненциального закона. Корректировка времени обслуживания клиентов у касс и продвижения очереди. Листинг программы.

    контрольная работа , добавлен 03.10.2008

    Имитационное моделирование как метод анализа экономических систем. Предпроектное обследование фирмы по оказанию полиграфических услуг. Исследование заданной системы с помощью модели типа "Марковский процесс". Расчет времени обслуживания одной заявки.

    курсовая работа , добавлен 23.10.2010

    Эффективность капитальных вложений. Статистические методы оценки целесообразности инвестиций с риском. Анализ чувствительности, сценариев. Установление номинальных и предельных значений неопределенных факторов. Имитационное моделирование Монте-Карло.

    контрольная работа , добавлен 27.10.2008

    Понятие равномерно распределенной случайной величины. Мультипликативный конгруэнтный метод. Моделирование непрерывных случайных величин и дискретных распределений. Алгоритм имитационного моделирования экономических отношений между кредитором и заемщиком.

    курсовая работа , добавлен 03.01.2011

    Обзор методов решения задачи. Расчет количества клиентов, выручки, средний размер очереди и количество отказов за период моделирования. Алгоритм моделирования процесса, разработка его программной реализации. Машинный эксперимент с разработанной моделью.

    курсовая работа , добавлен 15.01.2011

    Описание компьютерного моделирования. Достоинства, этапы и подходы к построению имитационного моделирования. Содержание базовой концепции структуризации языка моделирования GPSS. Метод оценки и пересмотра планов (PERT). Моделирование в системе GPSS.

    курсовая работа , добавлен 03.03.2011

    Метод имитационного моделирования в разработке экономико-математических моделей для учета неопределенности статистики предприятий. Функционирование имитационной модели изготовления малогабаритного стула: время работы и коэффициенты загрузки оборудования.

Метод имитационного моделирования и его особенности. Имитационная модель: представление структуры и динамики моделируемой системы

Метод имитационного моделирования является экспериментальным методом исследования реальной системы по ее компьютерной модели, который сочетает особенности экспериментального подхода и специфические условия использования вычислительной техники.

Имитационное моделирование является машинным методом моделирования, собственно без ЭВМ никогда не существовало, и только развитие информационных технологий привело к становлению этого вида компьютерного моделирования. В приведенном определении акцентируется внимание на экспериментальной природе имитации, применении имитационного метода исследования (осуществляется экспериментирование с моделью). Действительно, в имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Попробуем разобраться, какими свойствами обладает имитационная модель, в чем же состоит сущность имитационного моделирования.

В процессе имитационного моделирования (рис. 1.2) исследователь имеет дело с четырьмя основными элементами:

  • реальная система;
  • логико-математическая модель моделируемого объекта;
  • имитационная (машинная) модель;
  • ЭВМ, на которой осуществляется имитация - направленный

вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логикоматематическую модель реальной системы. Имитационный характер исследования предполагает наличие логико- или логико-математических моделей, описываемых изучаемый процесс (систему). Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строится моделирующий алгоритм , который описывает структуру и логику взаимодействия элементов в системе.

Рис. 1.2.

Программная реализация моделирующего алгоритма есть имитационная модель. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования и инструментальные средства моделирования - языки и системы моделирования, с помощью которых реализуются имитационные модели, будут рассмотрены в гл. 3. Далее ставится и осуществляется направленный вычислительный эксперимент на имитационной модели, в результате которого собирается и обрабатывается информация, необходимая для принятия решений с целью воздействия на реальную систему.

Выше мы определяли систему как совокупность взаимодействующих элементов, функционирующих во времени.

Составной характер сложной системы диктует представление ее модели в виде тройки A, S, Т>, где А - множество элементов (в их число включается и внешняя среда); S - множество допустимых связей между элементами (структура модели); Т - множество рассматриваемых моментов времени.

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты с сохранением их логической структуры и поведенческих свойств, т.е. динамики взаимодействий элементов.

При имитационном моделировании структура моделируемой системы непосредственно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.

В описании имитационной модели выделяют две составляющие:

  • статическое описание системы , которое, по существу, является описанием ее структуры. При разработке имитационной модели необходимо выполнять структурный анализ моделируемых процессов, определяя состав элементов модели;
  • динамическое описание системы, или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построение функциональной модели, отображающей моделируемые динамические процессы.

Идея метода с точки зрения его программной реализации состояла в следующем. Что если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы по определению взаимодействуют (или обмениваются информацией), значит, может быть реализован алгоритм функционирования отдельных элементов и их взаимодействия по определенным операционным правилам - моделирующий алгоритм. Кроме того, элементы существуют во времени - значит, надо задать алгоритм изменения переменных состояний. Динамика в имитационных моделях реализуется с помощью механизма продвижения модельного времени.

Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:

  • 1) представить реальную систему (процесс) как совокупность взаимодействующих элементов;
  • 2) алгоритмически описать функционирование отдельных элементов;
  • 3) описать процесс взаимодействия различных элементов между собой и с внешней средой.

Ключевым моментом в имитационном моделировании является выделение и описание состояний системы. Система характеризуется набором переменных состояний, каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование - это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо определенными операционными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделирование есть динамическое отражение изменений состояния системы с течением времени.

Итак, мы разобрались, что при имитационном моделировании логическая структура реальной системы отображается в модели, а также имитируется динамика взаимодействий подсистем в моделируемой системе. Это важный, но не единственный признак имитационной модели, исторически предопределивший не совсем удачное, на наш взгляд, название метода (simulation modeling ), который исследователи чаще называют системным моделированием.

Понятие о модельном времени. Механизм продвижения модельного времени. Дискретные и непрерывные имитационные модели

Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм продвижения модельного времени. Эти механизмы встроены в управляющие программы любой системы моделирования.

Если бы на ЭВМ имитировалось поведение одного компонента системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты. Чтобы обеспечить имитацию параллельных событий реальной системы, вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) / 0 , которую называют модельным (или системным) временем.

Существуют два основных способа изменения t Q:

  • 1) пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • 2) пособытийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип А /). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

При пособытийном методе (принцип «особых состояний») координаты времени меняются, только когда изменяется состояние системы. В пособытийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение пособытийного метода предпочтительно в случае, если частота наступления событий невелика, тогда большая длина шага позволит ускорить ход модельного времени. Пособытийный метод применяется, когда события, происходящие в системе, распределены неравномерно на временной оси и появляются через значительные временные интервалы. На практике пособытийный метод получил наибольшее распространение.

Способ фиксированного шага применяется, если:

  • закон изменения от времени описывается интегродифференци- альными уравнениями. Характерный пример: решение интегро- дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. При их использовании динамика модели является дискретным приближением реальных непрерывных процессов;
  • события распределены равномерно и можно подобрать шаг изменения временной координаты;
  • сложно предсказать появление определенных событий;
  • событий очень много и они появляются группами.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название ква- зипараллельного процесса.

Простейшая классификация на основные виды имитационных моделей связана с применением этих двух способов продвижения модельного времени. Различают непрерывные, дискретные и непрерывно-дискретные имитационные модели.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывнодискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Проблемы стратегического и тактического планирования имитационного эксперимента. Направленный вычислительный эксперимент на имитационной модели

Итак, мы определили, что методология имитационного моделирования - это системный анализ. Именно последнее дает право рассматриваемый вид моделирования называть системным моделированием.

В начале этого параграфа мы в общем виде дали понятие метода имитационного моделирования и определили его как экспериментальный метод исследования реальной системы по ее имитационной модели. Заметим, что понятие метода всегда шире понятия «имитационная модель».

Рассмотрим особенности этого экспериментального метода (имитационный метод исследования). Кстати, слова «simulation », «эксперимент», «имитация» одного плана. Экспериментальная природа имитации также предопределила происхождение названия метода. Итак, цель любого исследования состоит в том, чтобы узнать как можно больше об изучаемой системе, собрать и проанализировать информацию, необходимую для принятия решения. Суть исследования реальной системы по ее имитационной модели состоит в получении (сборе) данных о функционировании системы в результате проведения эксперимента на имитационной модели.

Имитационные модели - это модели прогонного типа, у которых есть вход и выход. То есть, если подать на вход имитационной модели определенные значения параметров, можно получить результат, который действителен только при этих значениях. На практике исследователь сталкивается со следующей специфической чертой имитационного моделирования. Имитационная модель дает результаты, которые действительны только для определенных значений параметров, переменных и структурных взаимосвязей, заложенных в имитационную программу. Изменение параметра или взаимосвязи означает, что имитационная программа должна быть запущена вновь. Поэтому для получения необходимой информации или результатов необходимо осуществлять прогон имитационных моделей, а не решать их. Имитационная модель не способна формировать свое собственное решение в том виде, как это имеет место в аналитических моделях (см. расчетный метод исследования), а может служить в качестве средства для анализа поведения системы в условиях, которые определяются экспериментатором.

Для пояснения рассмотрим детерминированный и стохастический случаи.

Стохастический случай. Имитационная модель - удобный аппарат для исследования стохастических систем. Стохастические системы - это такие системы, динамика которых зависит от случайных факторов, входные, выходные переменные стохастической модели, как правило, описываются как случайные величины, функции, процессы, последовательности. Рассмотрим основные особенности моделирования процессов с учетом действия случайных факторов (здесь реализуются известные идеи метода статистических испытаний, метода Монте-Карло). Результаты моделирования, полученные при воспроизведении единственной реализации процессов, в силу действия случайных факторов будут реализациями случайных процессов и не смогут объективно характеризовать изучаемый объект. Поэтому искомые величины при исследовании процессов методом имитационного моделирования обычно определяют как средние значения по данным большого числа реализаций процесса (задача оценивания). Поэтому эксперимент на модели содержит несколько реализаций, прогонов и предполагает оценивание по совокупности данных (выборки). Ясно, что (по закону больших чисел) чем больше число реализаций, тем получаемые оценки все больше приобретают статистическую устойчивость.

Итак, в случае со стохастической системой необходимо осуществлять сбор и оценивание статистических данных на выходе имитационной модели, а для этого проводить серию прогонов и статистическую обработку результатов моделирования.

Детерминированный случай. В этом случае достаточно провести один прогон при конкретном наборе параметров.

Теперь представим, что целями моделирования являются: исследование системы при различных условиях, оценка альтернатив, нахождение зависимости выхода модели от ряда параметров и, наконец, поиск оптимального варианта. В этих случаях исследователь может проникнуть в особенности функционирования моделируемой системы, изменяя значения параметров на входе модели, при этом выполняя многочисленные машинные прогоны имитационной модели.

Таким образом, проведение экспериментов с моделью на ЭВМ заключается в проведении многократных машинных прогонов с целью сбора, накопления и последующей обработки данных о функционировании системы. Имитационное моделирование позволяет исследовать модель реальной системы, чтобы изучать ее поведение путем многократных прогонов на ЭВМ при различных условиях функционирования реальной системы.

Здесь возникают следующие проблемы: как собрать эти данные, провести серию прогонов, как организовать целенаправленное экспериментальное исследование. Выходных данных, полученных в результате такого экспериментирования, может оказаться очень много. Как их обработать? Обработка и изучение их могут превратиться в самостоятельную проблему, намного сложнее задачи статистического оценивания.

В имитационном моделировании важным вопросом является не только проведение, но и планирование имитационного эксперимента в соответствии с поставленной целью исследования. Таким образом, перед исследователем, использующим методы имитационного моделирования, всегда встает проблема организации эксперимента, т.е. выбора метода сбора информации, который дает требуемый (для достижения поставленной цели исследования) ее объем при наименьших затратах (лишнее число прогонов - это лишние затраты машинного времени). Основная задача - уменьшить временные затраты на эксплуатацию модели, сократить машинное время на имитацию, отражающее затраты ресурса времени ЭВМ на проведение большого количества имитационных прогонов. Эта проблема получила название стратегического планирования имитационного исследования. Для ее решения используются методы планирования эксперимента, регрессионного анализа и др., которые подробно будут рассматриваться в п. 3.4.

Стратегическое планирование - это разработка эффективного плана эксперимента, в результате которого либо выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизирующая или максимизирующая отклик (выход) имитационной модели.

Наряду с понятием стратегического существует понятие тактического планирования, которое связано с определением способов проведения имитационных прогонов, намеченных планом эксперимента: как провести каждый прогон в рамках составленного плана эксперимента. Здесь решаются задачи определения длительности прогона, оценки точности результатов моделирования и др.

Такие эксперименты с имитационной моделью будем называть направленными вычислительными экспериментами.

Имитационный эксперимент, содержание которого определяется предварительно проведенным аналитическим исследованием (т.е. являющимся составной частью вычислительного эксперимента) и результаты которого достоверны и математически обоснованы, называется направленным вычислительным экспериментом.

В гл. 3 мы детально рассмотрим практические вопросы организации и проведения направленных вычислительных экспериментов на имитационной модели.

Общая технологическая схема, возможности и область применения имитационного моделирования

Обобщая наше рассуждение, можно в самом общем виде представить технологическую схему имитационного моделирования (рис. 1.3). (Более подробно технология имитационного моделирования будет рассматриваться в гл. 3.)


Рис. 1.3.

  • 1 - реальная система; 2 - построение логико-математической модели;
  • 3 - разработка моделирующего алгоритма; 4 - построение имитационной (машинной) модели; 5 - планирование и проведение имитационных экспериментов; 6 - обработка и анализ результатов; 7 - выводы о поведении реальной системы (принятие решений)

Рассмотрим возможности метода имитационного моделирования, обусловившие его широкое применение в самых различных сферах. Имитационное моделирование традиционно находит применение в широком спектре экономических исследований: моделировании производственных систем и логистике , социологии и политологии; моделировании транспортных, информационных и телекоммуникационных систем, наконец, глобальном моделировании мировых процессов .

Метод имитационного моделирования позволяет решать задачи исключительной сложности, обеспечивает имитацию любых сложных и многообразных процессов, с большим количеством элементов, отдельные функциональные зависимости в таких моделях могут описываться весьма громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем.

Имитационная модель содержит элементы непрерывного и дискретного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест, исследование динамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени

Имитационное моделирование - эффективный аппарат исследования стохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы (у математических моделей для этого класса систем ограниченные возможности). Имеется возможность проводить исследование в условиях неопределенности, при неполных и неточных данных.

Имитационное моделирование является наиболее ценным, системообразующим звеном в системах поддержки принятия решений, так как позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных. Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос «Что будет, если? ...». Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития, т.е. в тех случаях, когда реальной системы не существует.

В имитационной модели может быть обеспечен различный (в том числе и очень высокий) уровень детализации моделируемых процессов. При этом модель создается поэтапно, постепенно, без существенных изменений, эволюционно.

Процессов становится методом, который позволяет конструировать образцы, описывающие процессы таким образом, как будто бы они функционировали в действительности. Применяя их, есть возможность получить устойчивую и достоверную статистику. Исходя из этих данных, можно выбрать оптимальный путь развития организации.

Метод имитационного моделирования представляет собой способ исследования, при котором конкретная система будет заменяться той, которая имеет достаточную точность при описании реальной. С ней должны быть проведены эксперименты для того, чтобы получить достоверную информацию. Подобная процедура позволит постигнуть суть явления, не прибегая в таком случае к реальным изменениям объекта до необходимого времени.

Имитационное моделирование бизнес-процессов является частным случаем математического моделирования. Дело в том, что имеется класс объектов, для которых не были разработаны аналитические модели по разным причинам. Либо же для них отсутствует система методов применения инновационного решения. В подобных случаях применяется имитационное моделирование экономических процессов.

К ней прибегают в тех случаях, когда:

  • дорого проводить эксперименты с реальным объектом;
  • нельзя строить аналитическую модель по разным причинам;
  • необходимо получить результат и оценить его "поведение" с учетом временных рамок.

Имитационное процессов имеет несколько видов. Рассмотрим их более подробно.

Агентное моделирование собой представляет инновационное направление, которое широко применяется для того, чтобы исследовать децентрализованные системы. Динамика их функционирования определяется не столько глобальными законами и правилами, а, напротив, данные принципы становятся результатом индивидуальной деятельности членов данной группы.

Поэтому, в данном случае, цель и задачи моделей заключаются в получении представлений о данных основополагающих принципах, поведении выбранной системы. Но исходить нужно будет из предположений об индивидуальном, частном поведении ее отдельных объектов, а также их взаимоотношениях в системах.

Агентом становится особая сущность, которая обладает активностью и автономностью в поведении, способна принимать и применять решения в соответствии с набором конкретных правил, взаимодействовать с имеющимся окружением, а также самостоятельно изменять саму себя.

Дискретно-событийное моделирование является подходом к моделированию, который предлагает абстрагироваться от имеющихся событий, рассматривая ряд основных событий в системе. Речь идет об "ожидании", "обработке заказов", "движении с грузом", "разгрузке" и так далее. Подобное моделирование очень хорошо развито и обладает огромной сферой приложения - от логистики, а также системы обслуживания до производственных и транспортных систем. В целом, метод идеально может подойти в любой ситуации; был основан Дж. Гордоном в середине двадцатого века.

Системная динамика - это имитационное моделирование экономических процессов, когда для изучаемого объекта будут строиться графики, диаграммы, расчеты, отражающие причинные связи и глобальные влияния одних критериев на другие в определенный промежуток времени. Далее созданная на их основе система имитируется на компьютере. Благодаря этому имеется реальная возможность осознать суть того, что происходит, и выявить имеющиеся связи причины и следствия между явлениями и объектами. Системная динамика помогает построить модели развития городов, бизнес-процессов, систем производства, развития экологии, популяции, эпидемий и так далее.

Образовательный консорциум
СРЕДНЕРУССКИЙ УНИВЕРСИТЕТ
НОУ ВПО Тульский институт управления и бизнеса
Кафедра “Информационные технологии”

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

Конспект лекций для студентов
специальности 080801 - “Прикладная информатика в экономике”

Профессор кафедры ИТ Анатолий Александрович Ильин

ЛЕКЦИЯ 1. КРАТКИЙ ЭКСКУРС В
СИСТЕМНЫЙ АНАЛИЗ.
1 ПОНЯТИЕ КОМПЬЮТЕРНОГО
МОДЕЛИРОВАНИЯ 5

1.1 Свойства сложных систем. Сложная система, как объект моделирования. Прикладной системный анализ - методология исследования сложных систем 5

1.2 Определение модели. Общая классификация основных видов моделирования. Компьютерное моделирование. Метод имитационного моделирования 7

1.3 Процедурно-технологическая схема построения и исследования моделей сложных систем. Основные понятия моделирования 9

1.4 Метод статистического моделирования на ЭВМ (метод Монте-Карло) 12

1.5 Выводы. Отличительные особенности моделей различных классов 13

ЛЕКЦИЯ 2. СУЩНОСТЬ МЕТОДА
ИМИТАЦИОННОГО
МОДЕЛИРОВАНИЯ 15

2.1 Метод имитационного моделирования и его особенности. Статическое и динамическое представление моделируемой системы 15

2.2 Понятие о модельном времени. Механизм продвижения модельного времени. Дискретные и непрерывные имитационные модели 17

2.3 Моделирующий алгоритм. Имитационная модель 18

2.4 Проблемы стратегического и тактического планирования имитационного эксперимента. Направленный вычислительный эксперимент на имитационной модели 18

2.5 Общая технологическая схема имитационного моделирования 21

2.6 Возможности, область применения имитационного моделирования 21

ЛЕКЦИЯ 3. ТЕХНОЛОГИЧЕСКИЕ ЭТАПЫ О СОЗДАНИЯ И О ИСПОЛЬЗОВАНИЯ ИМИТАЦИОННЫХ МОДЕЛЕЙ 23

3.1 Основные этапы имитационного моделирования. Общая технологическая схема 23

3.2 Формулировка проблемы и определение целей имитационного исследования 24

3.3 Разработка концептуальной модели объекта моделирования 27

3.4 Формализация имитационной модели 29

3.5 Программирование имитационной модели 31

3.6 Сбор и анализ исходных данных 31

3.7 Испытание и исследование свойств имитационной модели 32

3.8 Направленный вычислительный эксперимент на имитационной модели. Анализ результатов моделирования и принятие решений 33

ЛЕКЦИЯ 4. БАЗОВЫЕ КОНЦЕПЦИИ СТРУКТУРИЗАЦИИ И ФОРМАЛИЗАЦИИ ИМИТАЦИОННЫХ СИСТЕМ 34

4.1 Методологические подходы к построению дискретных имитационных моделей 34

4.2 Язык моделирования GPSS 35

4.2.1 40 лет в мире информационных технологий 35

4.2.3 Системы массового обслуживания 36

4.2.4 GPSS - транзактно-ориентированная система моделирования 38

4.2.5 Функциональная структура GPSS 38

4.3 Агрегативные модели 41

4.3.1 Кусочно-линейный агрегат 41

4.3.2 Схема сопряжения. Агрегативная система 43

4.3.3 Оценка агрегативных систем как моделей сложных систем 45

4.4 Сети Петри и их расширения 45

4.4.1 Описание структур моделируемых проблемных ситуаций в виде сетей Петри 45

4.4.2 Формальное и графическое представление сетей Петри 47

4.4.3 Динамика сетей Петри 48

4.4.4 Различные обобщения и расширения сетей Петри 50

4.4.5 Технология разработки моделей 51

4.5 Модели системной динамики 52

4.5.1 Общая структура моделей системной динамики. Содержание базовой концепции структуризации 53

4.5.2 Диаграммы причинно-следственных связей 59

4.5.3 Системные потоковые диаграммы моделей 59

ЛЕКЦИЯ 5. ИНСТРУМЕНТАЛЬНЫЕ
СРЕДСТВА АВТОМАТИЗАЦИИ
МОДЕЛИРОВАНИЯ 67

5.1 Назначение языков и систем моделирования 67

5.2 Классификация языков и систем моделирования, их основные характеристики 69

5.3 Технологические возможности систем моделирования 70

5.4 Развитие технологии системного моделирования 73

5.5 Выбор системы моделирования 76

ЛЕКЦИЯ 6. ИСПЫТАНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ ИМИТАЦИОННОЙ МОДЕЛИ 77

6.1 Комплексный подход к тестированию имитационной модели 77

6.2 Проверка адекватности модели 79

6.3 Верификация имитационной модели 81

6.4 Валидация данных имитационной модели 82

6.5 Оценка точности результатов моделирования 83

6.6 Оценка устойчивости результатов моделирования 83

6.7 Анализ чувствительности имитационной модели 84

6.8 Тактическое планирование имитационного эксперимента 85

ЛЕКЦИЯ 7. ТЕХНОЛОГИЯ ПОСТАНОВКИ И ПРОВЕДЕНИЯ НАПРАВЛЕННОГО ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА НА ИМИТАЦИОННОЙ МОДЕЛИ 89

7.2 Основные цели и типы вычислительных
экспериментов в имитационном моделировании 91

7.3 Основы теории планирования экспериментов.
Основные понятия: структурная, функциональная и экспериментальная модели 93

7.4 План однофакторного эксперимента и процедуры обработки результатов эксперимента 98

7.5 Факторный анализ, полный и дробный факторный эксперимент и математическая модель 100

7.6 Основные классы планов, применяемые в вычислительном эксперименте 108

7.7 Методология анализа поверхности отклика. Техника расчета крутого восхождения 111

СПИСОК ЛИТЕРАТУРЫ 119

ЛЕКЦИЯ 1. КРАТКИЙ ЭКСКУРС В
СИСТЕМНЫЙ АНАЛИЗ.
1 ПОНЯТИЕ КОМПЬЮТЕРНОГО
МОДЕЛИРОВАНИЯ

1.1 Свойства сложных систем. Сложная система, как объект моделирования. Прикладной системный анализ - методология исследования сложных систем

В настоящее время понятие "система" в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).

В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

1 Свойство: Целостность и членимость

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаимодействующих между собой элементов.

У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

2 свойство: Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней средой).

Под "связями" понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

3 свойство: Организация.

Свойство характеризуется наличием определенной организации - формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение). При исследовании сложных систем обычно отмечают: Сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;

Наличие управления, разветвленной информационной сети и интенсивных потоков информации;

Наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

4 свойство: Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Примеры СС в экономической сфере многочисленны: организационно - производственная система, предприятие; социально - экономическая система, например регион; и др.

СС, как объект моделирования, имеет следующие характерные особенности:

СС, как правило, уникальны. Существующие аналоги таких объектов заметно отличаются друг от друга. Следствием этого на практике является необходимость строить новые модели.

Слабая структурированность теоретических и фактических знаний о системе. Так как изучаемые системы уникальны, то процесс накопления и систематизации знаний о них затруднен. Слабо изучены сами процессы. При идентификации сложных систем присутствует большая доля субъективных экспертных знаний о системе. СС слабопредсказуемы или контриинтуитивны, как писал Форрестер.

Рассмотренные выше интегративные качества СС предопределяют важный методологический вывод: СС не сводится к простой совокупности элементов, расчленяя СС на отдельные части, изучая каждую из них в отдельности, нельзя познать свойства системы в целом. Поэтому описание отдельных подсистем необходимо выполнять с учетом их места во всей системе в целом, и наоборот, система в целом исследуется исходя из свойств отдельных подсистем. Одну из основных черт сложных систем составляет взаимодействие выделенных подсистем. Необходимо учитывать результат воздействия одной подсистемы на другую и их взаимодействие с внешней средой. Исследователи отмечают наличие большого числа взаимосвязанных подсистем, многомерность СС, обусловленную большим числом связей между подсистемами, что затрудняет идентификацию моделируемых объектов. Отметим также, что расчленение СС на подсистемы зависит от целей создания системы и взглядов исследователя на нее.

Разнородность подсистем и элементов, составляющих систему. Это определяется и многообразием природы (физической разнородностью подсистем, имеющих различную природу), и разнородностью математических схем, описывающих функционирование различных элементов, а также одних и тех же элементов на различных уровнях изучения.

Присутствует необходимость исследовать систему в динамике, с учетом поведенческих аспектов.

Случайность и неопределенность факторов, действующих в изучаемой системе. Учет этих факторов приводит к резкому усложнению задач и увеличивает трудоемкость исследований (необходимость получения представительного набора данных). Существует необходимость учета большого количества действующих в системе факторов.

Многокритериальность оценок процессов, протекающих в системе. Невозможность однозначной оценки (выбора единого обобщенного критерия) диктуется следующими обстоятельствами:

наличием множества подсистем, каждая из которых, вообще говоря, имеет свои цели, оценивается по своим локальным критериям;

множественностью показателей (при системном подходе иногда противоречивых, в этом случае, выбирается компромиссный вариант), характеризующих работу всей системы;

наличием неформализуемых критериев, используемых при принятии решений, основанных на практическом опыте лиц, принимающих решение.

При системном подходе процесс исследования СС носит итерационный характер. Исходная модель усложняется путем детализации. Однако создание полной модели СС (супермодели) бесполезно, т.к. она будет столь же сложна в изучении, как и система. Следствием этого является необходимость использования ансамбля (комплекса) моделей при анализе системы. Различные модели могут отражать как разные стороны функционирования системы, так и разные уровни отображения исследователем одних и тех же процессов.

Рассмотренные особенности исследования сложных систем обуславливают потребность в специальных способах построения и анализа моделей сложных систем. Традиционные аналитические модели здесь беспомощны -нужны специальные компьютерные технологии.

Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа - компьютерное моделирование. Имитационное моделирование является наиболее эффективным и универсальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

1.2 Определение модели. Общая классификация основных видов моделирования. Компьютерное моделирование. Метод имитационного моделирования

Определение 1. Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Определение 2. Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

Итак, в процессе моделирования всегда существует оригинал (объект) и модель, которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Моделирование появилось в человеческой деятельности со времен наскальной живописи и сооружения идолов, т.е. как только человечество стало стремиться к пониманию окружающей действительности; -и сейчас, по-существу, прогресс науки и техники находит свое наиболее точное выражение в развитии способности человека создавать модели объектов и понятий.

Исследуя современные СС, человечество придумало различные классы моделей. Развитие информационных технологий можно в известном смысле интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения: Информационные системы, Системы распознавания образов, Системы искусственного интеллекта, Системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования : концептуальное моделирование -представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков,

физическое моделирование -моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений;

структурно - функциональное моделями являются схемы (блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;

математическое (логико-математическое) моделирование - построение модели осуществляется средствами математики и логики;

имитационное (программное) моделирование - при котором логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все из перечисленных видов моделирования или отдельные приемы).

Доминирующей тенденцией сегодня является взаимопроникновение всех видов моделирования, симбиоз различных информационных технологий в области моделирования, особенно для сложных приложений и комплексных проектов по моделированию. Так, например, имитационное моделирование включает в себя концептуальное моделирование (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) - для целей описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (натурного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования сегодня трактуется шире традиционного понятия "моделирование на ЭВМ", поэтому нуждается в уточнении.

Компьютерное моделирование -метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

К компьютерному моделированию относят: структурно-функциональное, имитационное.

Под термином "компьютерная модель", чаще всего понимают: Условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными; Отдельную программу (совокупность программ, программный комплекс) позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных факторов. Такие модели мы будем называть имитационными.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Кстати, возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального. Становление компьютерного моделирования связано с имитационным моделированием. Имитационное моделирование было исторически первым по -бравнению со структурно-функциональным, без компьютера никогда не существовало. Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем). Поэтому в освоении этого метода доминирующая роль отводится системным аналитикам. Сравним с моделированием на ЭВМ (например, математическим). Методологической основой здесь чаще всего являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и многие другие.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы. Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование сегодня предлагает совокупность методологических подходов и развитых технологических средств, используемых для подготовки и принятия решений экономического, организационного и социального или технического характера.

: Учеб. пособие / А. ... имитационного моделирования экономических процессов ; знать: теорию основных разделов имитационного моделирования экономических процессов : классификация имитационных моделей, общие...