За что алферову дали нобелевскую премию. Жорес Иванович Алферов

российский физик, лауреат Нобелевской премии 2000 года. р. 1930

Жорес Иванович Алфёров родился в белорусско-еврейской семье Ивана Карповича Алфёрова и Анны Владимировны Розенблюм в белорусском городе Витебске. Имя получил в честь Жана Жореса, международного борца против войны, основателя газеты «Юманите». После 1935 года семейство переехало на Урал, где отец работал директором целлюлозно-бумажного завода. Там Жорес учился с пятого по восьмой класс. 9 мая 1945 года Иван Карпович Алфёров получил направление в Минск, где Жорес окончил среднюю школу с золотой медалью. По совету учителя физики поехал поступать в Ленинградский электротехнический институт им. В.И. Ульянова (Ленина), куда был принят без экзаменов. Он учился на факультете электронной техники.

Со студенческих лет Алфёров участвовал в научных исследованиях. На третьем курсе он пошел трудиться в вакуумную лабораторию профессора Б.П. Козырева. Там он начал экспериментальную работу под руководством Н.Н. Созиной. Так, в 1950 году полупроводники стали главным делом его жизни.

В 1953 году, после окончания ЛЭТИ, Алфёров был принят на работу в Физико-технический институт им. А.Ф. Иоффе. В первой половине 50-х годов перед институтом была поставлена проблема создать отечественные полупроводниковые приборы для внедрения в отечественную индустрию. Перед лабораторией, в которой Алфёров работал младшим научным сотрудником, стояла задача: приобретение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. Алфёров участвовал в разработке первых отечественных транзисторов и силовых германиевых приборов. За комплекс проведенных работ в 1959 году он получил первую правительственную награду, в 1961 году им была защищена кандидатская диссертация.

Будучи кандидатом физико-математических наук, Алфёров мог перейти к разработке собственной темы. В те годы была высказана мысль использования в полупроводниковой технике гетеропереходов. Создание совершенных структур на их основе могло привести к качественному скачку в физике и технике. Однако попытки реализовать приборы на гетеропереходах не давали практических результатов. Причина неудач крылась в трудности создания близкого к идеальному перехода, выявлении и получении необходимых гетеропар. Во многих журнальных публикациях и на различных научных конференциях неоднократно говорилось о бесперспективности проведения работ в этом направлении.

Алфёров продолжал технологические исследования. В основу их им были положены эпитаксиальные методы, позволяющие влиять на фундаментальные параметры полупроводника: ширина запрещенной зоны, размерность электронного сродства, эффективная масса носителей тока, показатель преломления внутри единого монокристалла. Ж.И. Алфёров с сотрудниками создали не только гетероструктуры, близкие по своим свойствам к идеальной модели, но полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре. Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило еще и кардинально улучшить параметры большинства известных полупроводниковых приборов и сформировать принципиально новые, в особенности перспективные для применения в оптической и квантовой электронике. Новый период исследований гетеропереходов в полупроводниках Жорес Иванович обобщил в докторской диссертации, которую защитил в 1970 году.

Работы Ж.И. Алфёрова были по заслугам оценены международной и отечественной наукой. В 1971 году Франклиновский институт (США) присуждает ему престижную медаль Баллантайна, называемую «малой Нобелевской премией» и учрежденную для награждения за лучшие работы в области физики. В 1972 году следует самая высокая награда СССР – Ленинская премия.

С использованием технологии Алфёрова в России (впервые в мире) было организовано изготовление гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

На основе работ Алфёрова и его сотрудников созданы полупроводниковые лазеры, работающие в широкой спектральной области. Они нашли широкое использование в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек. В 1993–1994 годах впервые в мире реализуются гетеролазеры на основе структур с квантовыми точками – «искусственными атомами». В 1995 году Ж.И. Алфёров со своими сотрудниками впервые демонстрирует инжекционный гетеролазер на квантовых точках, работающий в непрерывном режиме при комнатной температуре. Исследования Ж.И. Алфёрова заложили основы принципиально новой электроники на основе гетероструктур с широким диапазоном применения, известной ныне как «зонная инженерия».

В 1972 году Алфёров стал профессором, а через год – заведующим базовой кафедрой оптоэлектроники ЛЭТИ. С 1987 по май 2003 года – директор ФТИ им. А.Ф. Иоффе, с мая 2003 по июль 2006 года – научный руководитель. С момента основания в 1988 году декан физико-технического факультета СПбГПУ.

В 1990–1991 годах – вице-президент АН СССР, председатель Президиума Ленинградского научного центра. Академик АН СССР (1979 год), затем РАН, почётный академик Российской академии образования. Главный редактор «Писем в Журнал технической физики». Был главным редактором журнала «Физика и техника полупроводников».

10 октября 2000 года по всем программам российского телевидения сообщили о присуждении Ж.И. Алфёрову Нобелевской премии по физике за 2000 год за развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники. Современные информационные системы должны отвечать двум основополагающим требованиям: быть скоростными, чтобы громадный объем информации можно было передать за короткий промежуток времени, и компактными, чтобы уместиться в офисе, дома, в портфеле или кармане. Своими открытиями Нобелевские лауреаты по физике за 2000 год создали основу таковой современной техники. Они открыли и развили быстрые опто– и микроэлектронные компоненты, которые создаются на базе многослойных полупроводниковых гетероструктур. На основе гетероструктур созданы мощные высокоэффективные светоизлучающие диоды, используемые в дисплеях, лампах тормозного освещения в автомобилях и светофорах. В гетероструктурных солнечных батареях, которые обширно используются в космической и наземной энергетике, достигнуты рекордные эффективности преобразования солнечной энергии в электрическую.

С 2003 года Алфёров председатель научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Часть своей Нобелевской премии Алфёров отдал на развитие научно-образовательного центра физико-технического института. «В центр приходят еще школьниками, учатся по углубленной программе, потом – институт, аспирантура, академическое образование, – рассказывает член президиума РАН, академик, директор Института радиотехники и электроники Юрий Гуляев. – Когда из страны валом начали уезжать ученые, а выпускники школ почти поголовно стали предпочитать бизнес образованию и науке – возникла страшная опасность, что знания старшего поколения ученых некому будет передать. Алфёров нашел выход и буквально совершил подвиг, создав эту своего рода теплицу для будущих ученых».

22 июля 2007 года было опубликовано «Письмо десяти академиков» («письмо десяти» или «письмо академиков») – открытое письмо десяти академиков РАН (Е. Александрова, Ж. Алфёрова, Г. Абелева, Л. Баркова, А. Воробьёва, В. Гинзбурга, С. Инге-Вечтомова, Э. Круглякова, М. Садовского, А. Черепащука) «Политика РПЦ МП: консолидация или развал страны?» Президенту России В. В. Путину. В письме выражена обеспокоенность «все возрастающей клерикализацией российского общества, активным проникновением церкви во все сферы общественной жизни», в частности в систему государственного образования. «Верить или не верить в Бога – дело совести и убеждений отдельного человека, – пишут академики. – Мы уважаем чувства верующих и не ставим своей целью борьбу с религией. Но мы не можем оставаться равнодушными, когда предпринимаются попытки подвергнуть сомнению научное Знание, вытравить из образования материалистическое видение мира, подменить знания, накопленные наукой, верой. Не следует забывать, что провозглашенный государством курс на инновационное развитие может быть осуществлён лишь в том случае, если школы и вузы вооружат молодых людей знаниями, добытыми современной наукой. Никакой альтернативы этим знаниям не существует».

Письмо вызвало огромную реакцию во всем обществе. Министр образования заявил: «Письмо академиков сыграло положительную роль, поскольку вызвало широкую общественную дискуссию, ряд представителей РПЦ придерживается такого же мнения». 13 сентября 2007 года президент России В.В. Путин заявил, что изучение в государственных школах предметов религиозной тематики нельзя делать обязательным, ибо это противоречит российской конституции.

В феврале 2008 года было опубликовано Открытое письмо представителей научной общественности к президенту РФ в связи с планами введения в школах курса «Основы православной культуры» (ОПК). К середине апреля письмо подписали более 1700 человек, из которых более 1100 имеют ученые степени (кандидаты и доктора наук). Позиция подписавшихся сводится к следующему: введение ОПК неизбежно приведет к конфликтам в школах на религиозной почве; для реализации «культурных прав» верующих нужно использовать не общеобразовательные, а уже имеющиеся в достаточных количествах воскресные школы; теология, она же богословие, не является научной дисциплиной.

С 2010 года – сопредседатель Консультативного научного Совета фонда «Сколково». Инновационный центр «Сколково» (российская «Кремниевая долина») – строящийся современный научно-технологический комплекс по разработке и коммерциализации новых технологий. В составе фонда «Сколково» существует пять кластеров, соответствующих пяти направлениям развития инновационных технологий: кластер биомедицинских технологий, кластер энергоэффективных технологий, кластер информационных и компьютерных технологий, кластер космических технологий и кластер ядерных технологий.

С 2011 – депутат Государственной думы Федерального собрания РФ 6 созыва от партии КПРФ.

Учредил Фонд поддержки образования и науки для поддержки талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

В своей книге «Физика и жизнь» Ж.И. Алфёров, в частности, пишет: «Все, что создано человечеством, создано благодаря науке. И если уж суждено нашей стране быть великой державой, то она ею будет не благодаря ядерному оружию или западным инвестициям, не благодаря вере в Бога или Президента, а благодаря труду ее народа, вере в знание, в науку, благодаря сохранению и развитию научного потенциала и образования».

Почему российские ученые не получают Нобелевских премий, должны ли преподаватели заниматься наукой, стоит ли оценивать ученых по публикациям и чем опасны цифровизация и криптовалюты, рассказал в интервью изданию Indicator нобелевский лауреат, академик РАН Жорес Алферов.

— Жорес Иванович, прошло четыре месяца, как РАН возглавил Александр Сергеев. На выборах вы поддерживали другого кандидата — Геннадия Красникова. Как вы оцениваете работу нового руководства Академии?

— Прежде всего хочу сказать, что, кого бы мы ни выбрали, новому руководителю Академии наук все равно было бы работать необычайно тяжело по очень простой причине. Успешное развитие науки возможно только при одном условии. Наука должна быть прежде всего востребована экономикой и обществом. Это главное. Если наука востребована экономикой и обществом, тогда даже правительство, политическое руководство может совершать очень крупные ошибки. В качестве примера ошибки, которая нанесла огромный ущерб развитию нашей науки, нашей биологии, я могу назвать лысенковскую сессию 1948 года, движение против современной генетики и то, что тогда обозвали менделизмом-морганизмом. Это была крупнейшая ошибка, но ее даже в то время как-то удавалось исправлять.

Безусловно, были напрасно политизированы многие направления, в том числе и экономика, и слишком все подводилось под требования марксизма-ленинизма. При всем этом выполнялось главное условие: наука была нужна нашей экономике и обществу. И поэтому она успешно развивалась. Академия наук СССР была признана во всем мире как крупнейшая и ведущая научная организации. Президенты Академии Сергей Иванович Вавилов, Александр Николаевич Несмеянов, лучший президент за всю историю Академии Мстислав Всеволодович Келдыш, Анатолий Петрович Александров были известными учеными и внесли огромный вклад в науку. Я могу и сегодня назвать их крупнейшие научные достижения. Сергей Иванович Вавилов, проживи он немного дольше, стал бы нобелевским лауреатом. Работы Александрова по размагничиванию кораблей сохранили наш флот во время войны, а после войны он был создателем нашего атомного флота. Несмеянов и Келдыш — создатели целого ряда новых областей науки. Дальше — Гурий Марчук и Юрий Осипов много делали для сохранения Академии. А затем случилось самое страшное. Была разрушена вся высокотехнологичная экономика страны, созданная потом и кровью многих поколений. И в результате наука перестала быть востребованной экономикой и обществом.

Конечно, Академии был нанесен огромный удар в 2013 году. Отраслевая наука погибла потому, что погибли высокотехнологичные отрасли промышленности. Вузовская наука в финансовом отношении сидела на хоздоговорах с промышленностью. РАН мы как-то сохранили за счет бюджета, но нельзя было сливать вместе РАН, Академию сельхознаук и Академию медицинских наук. Нельзя было сразу делать такую гигантскую Академию. Затем был принят новый закон о РАН, организовано Федеральное агентство научных организаций. Ученые развивают науку, а все, на чем эта наука делается, у ученых забрали. Конечно, были и преступления, во многих институтах сдавали в аренду помещения. Но нужно было бороться конкретно с этими вещами, а не отнимать все у Академии. Наиболее разумным было бы передать, как в тридцатые годы, все хозяйство Академии Управлению делами АН с согласованием назначения главы управления делами Академии с Правительством.

Что касается нового руководства, я могу сказать, что Александр Михайлович Сергеев — хороший физик, у него безусловно хорошие работы по физике. У него бесконечно тяжелая работа. Правительство и руководство страны должны понимать простую вещь: только на базе современных научных исследований мы можем вернуть стране и новые технологии, и новые компании. Мне недавно сообщали страшные цифры о том, кто и как владеет нашими крупнейшими компаниями. Я не знаю, как на самом деле обстоят дела, но боюсь, что мы в каком-то отношении сегодня находимся в положении 1913 года, когда очень многие высокоразвитые промышленные технологии находились в руках западных компаний и западных стран.

— Вы часто говорите про невостребованность науки экономикой и обществом. С экономикой все более-менее понятно, многие отмечают, что у нас нет полного цикла «фундаментальная — поисковая — прикладная наука». Но почему наука оказалась не нужна обществу?

— Так ее нет как раз потому, что наука не востребована экономикой. В результате крупных практических ошибок, в результате, я допускаю это, предательской деятельности каких-то групп в конце 80-х — начале 90-х мы оказались в ситуации, когда действительно были пустые полки, был экономический кризис. Хотя, вообще говоря, в 60-е и 70-е годы этого не было. В 80-е годы даже была такая шутка, что полки в магазинах пустые, а холодильники дома у всех полные. Когда обсуждаются проблемы экономики, я рекомендую в том числе своим коллегам-физикам читать статью величайшего физика и ученого XX столетия и, по моему мнению, величайшего ученого всех времен и народов Альберта Эйнштейна. В мае 1949 года он опубликовал статью под названием «Why socialism?». В самом начале этой статьи он написал, что физики имеют полное право оценивать экономику и экономическое развитие, потому что это на самом деле новые формы развития, оценивать которые нынешние экономисты не могут, ведь они знают лишь экономику капиталистического периода. Один из фундаментальных выводов этой статьи Эйнштейна заключается в том, что, во-первых, капитализм по закону несет право отнимать друг у друга и грабить друг друга. Масса владеющих собственностью людей начинает отнимать ее и делает это не нарушая закона, а по закону.

Во-вторых, Эйнштейн подчеркивает, что капиталистическое общество рождает олигархию и олигархов, бороться с которыми демократическими методами невозможно. Также он отмечает, что капитализм несет не только такую ужасную экономику и законное перехватывание собственности друг у друга, но и наносит огромный ущерб системе образования, где молодежь воспитывается в духе «как быть первым для того, чтобы хапнуть». Он видел выход только в социализме и плановой экономике. Эйнштейн считал их кардинальной дорогой развития человечества. Но предупреждал, что и при плановой экономике можно создать такие условия закрепощения личности, при которых все остальное покажется свободой.

Вторая вещь, которая, с моей точки зрения, является основной, состоит в том, что для нашей страны нет никакого другого выхода, кроме как создавать новые технологии на основе научных исследований и компании, которых нет на Западе. При этом нужно понимать, что мы должны развивать образование. Я делаю это в своем маленьком университете. Там 200 школьников, 240 студентов-бакалавров, 150 магистрантов, 40 аспирантов. Мы учим физике, математике, программированию, основам биологии и медицины, физике конденсированного состояния, естественно, и нашим гетероструктурам, их применению в электронике. Ребятам трудно, но в итоге они учатся хорошо. Наука создается из синтеза близких областей, так было раньше, есть сейчас и будет в будущем. Выигрыш здесь может быть, только если вы сможете обучать и правильно угадать эти направления. И настоящий научный работник всегда должен преподавать. Могут быть исключения, но, как правило, он должен преподавать.

— А преподаватели вузов должны заниматься научной работой?

— И преподаватель должен заниматься научной работой. Мы в университете так и делаем. Если у человека склонность к преподавательской деятельности, у него может быть меньший объем исследовательской работы. Но заниматься и тем, и тем необходимо. Что касается образования, то оно должно быть бесплатным, и это было нашим достижением в советское время. Как можно брать за это деньги и давать преимущество людям отнюдь не за их способности?

— Жорес Иванович, еще пара вопросов про текущую деятельность Академии. Сейчас ФАНО проводит оценку результативности научных институтов и делит их на три категории. Как вы к этому относитесь?

— Отрицательно. Как и к работе по распределению научных работников по классу и по уровню в зависимости от того, сколько у них публикаций и в каких журналах. Могу сказать, что я бы попал в очень слабую группу, если бы меня оценивали по публикациям, за которые я получил Нобелевскую премию. Например, в Санкт-Петербурге в области физиологии, биомедицинских исследований есть институты. Как можно сравнивать, скажем, Институт физиологии имени И.П. Павлова и Институт эволюционной физиологии и биохимии имени И.М. Сеченова? Это разные институты, с разными направлениями исследований физиологии. В том, что вы разведете институты, которые относятся к одному отделению, по разным категориям, нет ничего хорошего. Тут могут быть какие-то обиды, борьба между институтами непонятно за что.

— Зато тот, кто попадет в первую категорию, получит больше денег, чем тот, кто окажется во второй.

— Я был с февраля 1989 года по декабрь прошлого года председателем Санкт-Петербургского научного центра РАН. До создания ФАНО институты входили в отделения и одновременно их работу курировал наш президиум, мы организовывали взаимодействие академических институтов с отраслевыми институтами и вузами. Затем, в результате реформы, решили, что такие центры не нужны. Санкт-Петербургский научный центр остался, но уже как бюджетное научное учреждение, как маленький научный институт. В декабре прошлого года господин Котюков уволил меня с поста председателя центра, даже не сказав «спасибо». У нас в Академии, вообще говоря, так не принято. Я это переживу спокойно, но говорю об этом, чтобы продемонстрировать стиль работы руководителя ФАНО.

— Сейчас в Думе активно обсуждается новый закон о науке. Министерство образования и науки этот закон активно защищает, РАН наоборот выступает «против». Что вы думаете об этом законе?

— Я не считаю, что нужно менять действующий закон о науке, принятый в 1996 году. В нем нет ничего плохого, он отвечал изменениям, которые произошли в стране. И вместо нового закона следовало бы принимать новые поправки, которые диктуются нынешним состоянием экономики и без которых нельзя обойтись.

— Давайте перейдем к Нобелевским премиям. За 15 лет у российских ученых, если не брать в расчет Андрея Гейма и Константина Новоселова, нет ни одной премии. Вы несколько раз упоминали, что, скажем, последние премии по химии выдавались за исследования в области биохимии, а у нас такого класса работ нет. Есть ли сейчас в России исследования и ученые, которые могли бы получить Нобелевскую премию?

— Я не могу сразу назвать работы нобелевского уровня, выполненные в России российскими учеными ни в физике, ни в химии, ни в физиологии и медицине. Гейм и Новоселов — молодцы, у них хорошая работа по графену, но она полностью сделана за границей. Наша последняя Нобелевская премия была присуждена в 2003 году Виталию Гинзбургу и Алексею Абрикосову за работы по теории сверхпроводимости 50-х годов. Я получил Нобелевскую премию за работы, выполненные в конце 60-х годов.

У нас часто говорят, что Нобелевский комитет не присуждал премий нашим ученым, хотя и были достойные работы. Прежде всего я хотел бы отметить, что все Нобелевские премии по физике и химии были присуждены ученым из трех институтов: ФИАН, Физтех и физических проблем, там были настоящие научные школы мирового класса. Наверное, «не успели» получить Нобелевскую премию открытие электронного парамагнитного резонанса Евгением Завойским и выдающиеся работы по оптике полупроводников, включая предсказание и открытие «экситона» Яковом Френкелем, Евгением Гроссом и Леонидом Келдышем.

— Вы говорите, что среди живущих в России ученых некому присуждать Нобелевские премии. Должно ли государство возвращать тех, кто уехал работать за границу? Нужны ли госпрограммы?

— Прежде всего я ничего не говорю о присуждении Нобелевских премий и не имею права об этом говорить. У тех, кто уехал и успешно работает за границей, там уже, как правило, есть и семья, и друзья, позиция. Они приедут к нам, если им заплатят большие деньги, выполнят работу по гранту и уедут обратно. Те, у кого там не получилось, они не нужны и здесь.

— Но есть же успешные ученые, которые сами возвращаются. Например, кристаллограф Артем Оганов, который успешно работал в США, Китае, а потом вернулся в Россию. И, по его словам, ему тут очень хорошо живется.

— В индивидуальном порядке ученые могут приезжать, но вводить программу возвращения наших ученых, уехавших за границу… Я бы не стал этого делать. Повторюсь, тот, кто там был успешным, приедет к нам только за большим грантом и снова уедет. Тот, кто там не смог ничего сделать, не нужен и здесь. Так что никакая госпрограмма не нужна. Нужно в первую очередь изменить уровень зарплат научным работникам. Потому что сегодня они очень низкие.

— Руководители ФАНО и Минобрнауки на это обычно отвечают, что те, кто хочет прилично зарабатывать, и так зарабатывают. Для этого есть гранты, программы. А те, кто не очень хочет зарабатывать, получают свои 15 тысяч.

— Зарабатывать деньги можно по-разному. Есть научные работники, которые получают под одну и ту же работу по пять грантов от разных грантодержателей. И таких людей много. Да, они зарабатывают, но каким способом? Когда человек получает на одну работу пять грантов, он — жулик. Есть крупные научные проекты, в которых мы должны участвовать, чтобы двигать науку. В советское время мы могли себе позволить участие в целом ряде крупных проектов. Сегодня к участию в таких проектах надо подходить чрезвычайно взвешенно. Во многих случая гораздо выгоднее принять участие в западном проекте, а не делать его здесь. Эти решения должна принимать Академия наук.

На мой взгляд, также неправильно, что Курчатовский институт, хороший научный институт, стал вторым научным центром, пытаясь играть роль а-ля Академия наук. Когда в состав Курчатовского института стали включаться институты, не имеющие отношения к его профилю. Мы знаем, почему это делается. Посмотрите, сколько денег приходится на научного сотрудника в Курчатовском институте и в институтах РАН. Разве это правильно? А если вы попробуете назвать крупнейшие научные достижение, то хвастаться ни РАН, ни Курчатовскому институту нечем. У РАН оснований для такого хвастовства даже больше.

— Сейчас набирает обороты цифровизация науки, образования, всего на свете. Все обсуждают блокчейн, криптовалюты. Что вы об этом думаете? Как будет меняться облик науки и ученого?

— Прежде всего научные сотрудники, в том числе и создатели цифровой экономики и цифровизации, должны к этому делу подойти очень внимательно. С моей точки зрения, начинает работать большая команда жулья. Нужно разбираться. Криптовалюты — это яркий пример команды жуликов. Сегодня, к сожалению, и среди научных работников становится популярным принцип получения больших дополнительных средств не обязательно за достойные проекты. И в цифровизации это может случиться даже чаще, чем в других областях.

Родился 15 марта 1930 г. в г. Витебске в семье Ивана Карповича и Анны Владимировны Алфёровых, уроженцев Белоруссии. Отец восемнадцатилетним юношей в 1912 г. приехал в Санкт-Петербург. Работал грузчиком в порту, разнорабочим на конвертной фабрике, рабочим на заводе «Лесснер» (впоследствии «Завод им. Карла Маркса»). В первую мировую дослужился до звания унтер-офицера лейб-гвардии, став георгиевским кавалером.

В сентябре 1917 г. И.К.Алфёров вступил в партию большевиков и на всю жизнь остался верен избранным в юности идеалам. Об этом, в частности, свидетельствуют и горькие слова самого Жореса Ивановича: «Я счастлив, что мои родители не дожили до этого времени» (1994 г.). В гражданскую войну И.К.Алфёров командовал кавалерийским полком Красной Армии, встречался с В.И.Лениным, Л.Д.Троцким, Б.Б.Думенко. После окончания Промакадемии в 1935 г. он прошёл путь от директора завода до начальника треста: Сталинград, Новосибирск, Барнаул, Сясьстрой (под Ленинградом), Туринск (Свердловская область, военные годы), Минск (после войны). Ивану Карповичу были свойственны внутренняя порядочность и нетерпимость к огульному осуждению людей.

Анна Владимировна обладала ясным умом и большой житейской мудростью, во многом унаследованной сыном. Работала в библиотеке, возглавляла совет жён-общественниц.


Ж.И.Алфёров с родителями, Анной Владимировной и Иваном Карповичем (1954 г.).

Супруги, как большинство людей того поколения, стойко верили в революционные идеи. Тогда появилась мода давать детям звучные революционные имена. Младший сын стал Жоресом в честь французского революционера Жана Жореса, а старший – Марксом, в честь основоположника научного коммунизма. Жорес и Маркс были директорскими детьми, а значит, нужно было быть примером и в учёбе, и в общественной жизни.

Молох репрессий обошёл стороной семью Алфёровых, но война взяла своё. Маркс Алфёров закончил школу 21 июня 1941 г. в Сясьстрое. Поступил в Уральский индустриальный институт на энергетический факультет, но проучился лишь несколько недель, а потом решил, что его долг – защищать Родину. Сталинград, Харьков, Курская дуга, тяжёлое ранение в голову. В октябре 1943 г. он провёл три дня с семьёй в Свердловске, когда после госпиталя возвращался на фронт. И эти три дня, фронтовые рассказы старшего брата, его страстную юношескую веру в силу науки и инженерной мысли Жорес запомнил на всю жизнь. Гвардии младший лейтенант Маркс Иванович Алфёров погиб в бою во «втором Сталинграде» – так называли тогда Корсунь-Шевченковскую операцию.


В 1956 г. Жорес приехал на Украину, чтобы найти могилу брата. В Киеве, на улице, он неожиданно встретил своего сослуживца Б.П.Захарченю, ставшего впоследствии одним из ближайших его друзей. Договорились поехать вместе. Купили билеты на пароход и уже на следующий день плыли вниз по Днепру к Каневу в двухместной каюте. Нашли деревню Хильки, около которой Маркс Алфёров яростно отражал попытку отборных немецких дивизий выйти из корсунь-шевченковского «котла». Нашли братскую могилу с белым гипсовым солдатом на постаменте, высящемся над буйно разросшейся травой, в которую были вкраплены простые цветы, какие обычно сажают на русских могилах: ноготки, анютины глазки, незабудки.

В разрушенном Минске Жорес учился в единственной в то время русской мужской средней школе № 42, где был замечательный учитель физики - Яков Борисович Мельцерзон. В школе не было физического кабинета, но влюблённый в физику Яков Борисович умел передать ученикам свое отношение к любимому предмету, так что в довольно хулиганистом классе никогда не шалили. Жорес, поражённый рассказом Якова Борисовича о работе катодного осциллографа и принципах радиолокации, поехал в 1947 г. учиться в Ленинград, в Электротехнический институт, хотя его золотая медаль открывала возможность поступления в любой институт без экзаменов. Ленинградский электротехнический институт (ЛЭТИ) им. В.И.Ульянова (Ленина) был учреждением с уникальным названием: в нём упомянуты и настоящая фамилия, и партийная кличка человека, которого часть населения бывшего СССР теперь не очень почитает (нынче это Санкт-Петербургский государственный электротехнический университет).

Фундамент науки в ЛЭТИ, сыгравшем выдающуюся роль в развитии отечественной электроники и радиотехники, был заложен такими «китами», как Александр Попов, Генрих Графтио, Аксель Берг, Михаил Шателен. Жоресу Ивановичу, по его словам, очень повезло с первым научным руководителем. На третьем курсе, считая, что математика и теоретические дисциплины даются легко, а «руками» нужно многому учиться, он пошёл работать в вакуумную лабораторию профессора Б.П.Козырева. Там, начав в 1950 г. экспериментальную работу под руководством Наталии Николаевны Созиной, незадолго до этого защитившей диссертацию по исследованию полупроводниковых фотоприёмников в ИК-области спектра, Ж.И.Алфёров впервые столкнулся с полупроводниками, ставшими главным делом его жизни. Первой проштудированной монографией по физике полупроводников стала книга Ф.Ф.Волькенштейна «Электропроводность полупроводников», написанная во время блокады Ленинграда. В декабре 1952 г. проходило распределение. Ж.И.Алфёров мечтал о Физтехе, возглавляемом Абрамом Фёдоровичем Иоффе, монография которого «Основные представления современной физики» стала для молодого учёного настольной книгой. При распределении были три вакансии, и одна досталась Ж.И.Алфёрову. Жорес Иванович много позже писал, что его счастливая жизнь в науке была предопределена именно этим распределением. В письме родителям в Минск он сообщил о выпавшем ему огромном счастье работать в институте Иоффе. Жорес тогда ещё не знал, что Абрама Фёдоровича за два месяца до этого вынудили уйти из созданного им института, где он директорствовал более 30 лет.

Систематические исследования полупроводников в Физико-техническом институте были начаты ещё в 30-е гг. прошлого века. В 1932 г. В.П.Жузе и Б.В.Курчатов исследовали собственную и примесную проводимость полупроводников. В том же году А.Ф.Иоффе и Я.И.Френкель создали теорию выпрямления тока на контакте металл–полупроводник, основанную на явлении туннелирования. В 1931-м и 1936 гг. Я.И.Френкель опубликовал свои знаменитые работы, в которых предсказал существование экситонов в полупроводниках, введя сам этот термин и разработав теорию экситонов. Первая диффузионная теория выпрямляющего p–n -перехода, ставшая основой теории p–n -перехода В.Шокли, была опубликована Б.И.Давыдовым в 1939 г. По инициативе А.Ф.Иоффе с конца 40-х гг. в Физтехе были начаты исследования интерметаллических соединений.

30 января 1953 г. Ж.И.Алфёров приступил к работе у нового научного руководителя, в то время заведующего сектором, кандидата физико-математических наук Владимира Максимовича Тучкевича. Перед небольшим коллективом сектора была поставлена очень важная задача: создание первых отечественных германиевых диодов и транзисторов с p–n-переходами (см. «Физику» № 40/2000, В.В.Рандошкин . Транзистор). Тема «Плоскость» была поручена правительством параллельно четырём институтам: ФИАНу и ФТИ в Академии наук, ЦНИИ-108 – главному в то время радиолокационному институту Министерства обороны в Москве (во главе с академиком А.И.Бергом) – и НИИ-17 – головному институту электронной техники во Фрязино, под Москвой.

Физтех в 1953 г., по нынешним меркам, был небольшим институтом. Ж.И.Алфёров получил пропуск № 429 (что означало численность всех сотрудников института на тот момент). Потом большинство знаменитых физтеховцев уехали в Москву к И.В.Курчатову и в другие вновь создаваемые «атомные» центры. «Полупроводниковая элита» ушла вместе с А.Ф.Иоффе в недавно организованную лабораторию полупроводников при президиуме АН СССР. В ФТИ из «старшего» поколения «полупроводниковцев» остались лишь Д.Н.Наследов, Б.Т.Коломиец и В.М.Тучкевич.

Новый директор ЛФТИ, академик А.П.Комар, далеко не лучшим образом вёл себя по отношению к своему предшественнику, но в развитии института избрал вполне разумную стратегию. Основное внимание уделялось поддержке работ по созданию качественно новой полупроводниковой электроники, космических исследований (газодинамика больших скоростей и высокотемпературные покрытия - Ю.A.Дунаев) и разработке методов разделения лёгких изотопов для водородного оружия (Б.П.Константинов). Не забывались и чисто фундаментальные исследования: именно в это время был экспериментально открыт экситон (Е.Ф.Гросс), созданы основы кинетической теории прочности (С.Н.Журков), начаты работы по физике атомных столкновений (В.М.Дукельский, К.В.Федоренко). Блестящий доклад Е.Ф.Гросса об открытии экситона прозвучал на первом для Ж.И.Алфёрова полупроводниковом семинаре в Физтехе в феврале 1953 г. Он испытал ни с чем не сравнимое ощущение – быть свидетелем рождения выдающегося открытия в той области науки, в которой делаешь свои первые шаги.

Дирекция ФТИ прекрасно понимала необходимость привлечения молодёжи в науку, и каждый приходящий молодой специалист проходил собеседование в дирекции. Именно в это время были приняты в Физтех будущие члены Академии наук СССР Б.П.Захарченя, А.А.Каплинский, Е.П.Мазец, В.В.Афросимов и многие другие.

В Физтехе Ж.И.Алфёров очень быстро дополнил свое инженерно-техническое образование физическим и стал высококлассным специалистом по квантовой физике полупроводниковых приборов. Главной была работа в лаборатории – Алфёрову посчастливилось быть участником рождения советской полупроводниковой электроники. Жорес Иванович как реликвию хранит свой лабораторный журнал того времени с записью о создании им 5 марта 1953 г. первого советского транзистора с p–n -переходом. Сегодня можно удивляться, как очень небольшой коллектив очень молодых сотрудников под руководством В.М.Тучкевича в течение нескольких месяцев разработал основы технологии и метрологии транзисторной электроники: А.А.Лебедев – получение и легирование совершенных монокристаллов германия, Ж.И.Алфёров – получение транзисторов с параметрами на уровне лучших мировых образцов, А.И.Уваров и С.М.Рывкин – создание прецизионной метрики кристаллов германия и транзисторов, Н.С.Яковчук – разработка схем на транзисторах. В этой работе, которой коллектив отдавался со всей страстью молодости и сознанием высочайшей ответственности перед страной, очень быстро и эффективно шло формирование молодого учёного, понимание значения технологии не только для создания новых электронных приборов, но и для физических исследований, роли и значения «мелких», на первый взгляд, деталей в эксперименте, необходимости понимания «простых» основ прежде выдвигания «высоконаучных» объяснений неудачных результатов.

Уже в мае 1953 г. первые советские транзисторные приёмники демонстрировались «высокому начальству», а в октябре в Москве работу принимала правительственная комиссия. ФТИ, ФИАН и ЦНИИ-108, используя разные методики конструирования и технологии изготовления транзисторов, успешно решили задачу, и лишь НИИ-17, слепо копируя известные американские образцы, провалил работу. Правда, созданному на основе одной из его лабораторий первому в стране полупроводниковому институту НИИ-35 и была поручена разработка промышленной технологии транзисторов и диодов с p–n -переходами, с которой они успешно справились.

В последующие годы небольшой коллектив «полупроводниковцев» ФТИ заметно расширился, и в очень короткое время в лаборатории уже доктора физмат наук профессора В.М.Тучкевича были созданы первые советские германиевые силовые выпрямители, германиевые фотодиоды и кремниевые солнечные батареи, исследовано поведение примесей в германии и кремнии.

В мае 1958 г. к Ж.И.Алфёрову обратился Анатолий Петрович Александров, будущий президент Академии наук СССР, с просьбой разработать полупроводниковые устройства для первой советской атомной подводной лодки. Для решения этой задачи нужны были принципиально новые технология и конструкция германиевых вентилей. Младшему научному сотруднику лично (!) звонил заместитель Председателя Правительства СССР Дмитрий Фёдорович Устинов. Пришлось на два месяца поселиться прямо в лаборатории, и работа была успешно выполнена в рекордно короткие сроки: уже в октябре 1958 г. устройства стояли на подводной лодке. Для Жореса Ивановича и сегодня полученный в 1959 г. за эту работу первый орден является одной из самых ценных наград!


Ж.И.Алфёров после вручения правительственной награды за работы по заказу ВМФ СССР

Установка вентилей была связана с многочисленными поездками в Северодвинск. Когда на «приёмку темы» приехал заместитель главкома ВМС и ему доложили, что теперь па подлодках стоят новые германиевые вентили, адмирал поморщился и раздражённо спросил: «А что же, отечественных не нашлось?».

В Кирово-Чепецке, где усилиями многих сотрудников Физтеха велись работы по разделению изотопов лития с целью создания водородной бомбы, Жорес познакомился со многими замечательными людьми и живо их описывал. Б.Захарченя запомнил такой его рассказ о Борисе Петровиче Звереве – зубре «оборонки» сталинских времён, главном инженере завода. Во время войны, в самое её тяжёлое время, он руководил предприятием, занимавшимся электролитическим получением алюминия. В технологическом процессе использовалась патока, хранившаяся в огромном чане прямо в цехе. Голодные рабочие её разворовывали. Борис Петрович созвал рабочих на собрание, произнёс прочувствованную речь, затем поднялся по лестнице к верхнему краю чана, расстегнул штаны и помочился на виду у всех в чан с патокой. На технологию это не повлияло, но патоку уже никто не воровал. Жореса очень забавляло это чисто русское решение вопроса.

За успешную работу Ж.И.Алфёров регулярно поощрялся денежными премиями, вскоре получил звание старшего научного сотрудника. В 1961 г. он защитил кандидатскую диссертацию, посвящённую в основном разработке и исследованию мощных германиевых и частично кремниевых выпрямителей. Заметим, что в этих приборах, как и во всех ранее созданных полупроводниковых приборах, использовались уникальные физические свойства p–n -перехода – искусственно созданного в полупроводниковом монокристалле распределения примесей, при котором в одной части кристалла носителями заряда являются отрицательно заряженные электроны, а в другой – положительно заряженные квазичастицы, «дырки» (латинские n и p как раз и значат negative и positive ). Поскольку различается лишь тип проводимости, а вещество одно и то же, p–n -переход можно назвать гомопереходом .

Благодаря p–n -переходу в кристаллах удалось осуществить инжекцию электронов и дырок, а простая комбинация двух p–n -переходов позволила реализовать монокристаллические усилители с хорошими параметрами – транзисторы. Наибольшее распространение получили структуры с одним p–n -переходом (диоды и фотоэлементы), двумя p–n -переходами (транзисторы) и тремя p–n -переходами (тиристоры). Всё дальнейшее развитие полупроводниковой электроники шло по пути исследования монокристаллических структур на основе германия, кремния, полупроводниковых соединений типа А III B V (элементов III и V групп Периодической системы Менделеева). Улучшение свойств приборов шло главным образом по пути совершенствования методов формирования p–n -переходов и использования новых материалов. Замена германия кремнием позволила поднять рабочую температуру приборов и создать высоковольтные диоды и тиристоры. Успехи в технологии получения арсенида галлия и других оптических полупроводников привели к созданию полупроводниковых лазеров, высокоэффективных источников света и фотоэлементов. Комбинации диодов и транзисторов на одной монокристаллической кремниевой подложке стали основой интегральных схем, на которых базировалось развитие электронно-вычислительной техники. Миниатюрные, а затем и микроэлектронные приборы, создаваемые в основном на кристаллическом кремнии, буквально смели электровакуумные лампы, позволив уменьшить в сотни и тысячи раз размеры устройств. Достаточно вспомнить старые ЭВМ, занимавшие огромные помещения, и их современный эквивалент ноутбук – компьютер, напоминающий маленький атташе-кейс, или «дипломат», как его называют в России.

Но предприимчивый, живой ум Ж.И.Алфёрова искал свой путь в науке. И он был найден, несмотря на крайне тяжёлую жизненную ситуацию. После молниеносной первой женитьбы ему пришлось так же молниеносно развестись, потеряв квартиру. В результате скандалов, устроенных свирепой тёщей в парткоме института, Жорес поселился в полу-подвальной комнате старого физтеховского дома.

Один из выводов кандидатской диссертации гласил, что p–n -переход в гомогенном по составу полупроводнике (гомоструктура ) не может обеспечить оптимальные параметры многих приборов. Стало ясно, что дальнейший прогресс связан с созданием p–n -перехода на границе разных по химическому составу полупроводников (гетероструктурах ).

В связи с этим сразу после появления первой работы, в которой была описана работа полупроводникового лазера на гомоструктуре в арсениде галлия, Ж.И.Алфёров выдвинул идею использования гетероструктур. Поданная заявка на выдачу авторского свидетельства на это изобретение по законам того времени была засекречена. Лишь после публикации аналогичной идеи Г.Крёмером в США гриф секретности был снижен до уровня «для служебного пользования», но авторское свидетельство было опубликовано лишь много лет спустя.

Лазеры на гомопереходах были неэффективны из-за высоких оптических и электрических потерь. Пороговые токи были очень высоки, а генерация осуществлялась только при низких температурах. В своей статье Г.Крёмер предложил использовать двойные гетероструктуры для пространственного ограничения носителей в активной области. Он предположил, что «с помощью пары гетеропереходных инжекторов лазерная генерация может быть осуществлена во многих непрямозонных полупроводниках и улучшена в прямозонных». В авторском свидетельстве Ж.И.Алфёрова также отмечалась возможность получения высокой плотности инжектированных носителей и инверсной заселённости с помощью «двойной» инжекции. Указывалось, что лазеры на гомопереходах могут обеспечить «непрерывный режим генерации при высоких температурах», к тому же возможно «увеличение излучающей поверхности и использование новых материалов для получения излучения в различных областях спектра».

Первоначально теория развивалась существенно быстрее, чем практическая реализация устройств. В 1966 г. Ж.И.Алфёров сформулировал общие принципы управления электронными и световыми потоками в гетероструктурах. Чтобы избежать засекречивания, в названии статьи были упомянуты лишь выпрямители, хотя эти же принципы были применимы и к полупроводниковым лазерам. Он предсказал, что плотность инжектированных носителей может быть на много порядков выше (эффект «суперинжекции»).

Идея использования гетероперехода была выдвинута на заре развития электроники. Уже в первом патенте, связанном с транзисторами на p–n -переходе, В.Шокли предложил для получения односторонней инжекции использовать широкозонный эмиттер. Важные теоретические результаты на ранней стадии исследования гетероструктур были получены Г.Крёмером, который ввёл понятия квазиэлектрических и квазимагнитных полей в плавном гетеропереходе и предположил чрезвычайно высокую эффективность инжекции гетеропереходов по сравнению с гомопереходами. Тогда же появились различные предложения по использованию гетеропереходов в солнечных батареях.

Итак, реализация гетероперехода открывала возможность создания более эффективных приборов для электроники и уменьшения размеров устройств буквально до атомных масштабов. Однако заниматься гетеропереходами Ж.И.Алфёрова отговаривали многие, в том числе и В.М.Тучкевич, неоднократно вспоминавший впоследствии об этом в речах и тостах, подчёркивая смелость Жореса Ивановича и дар предвидеть пути развития пауки. В то время существовал всеобщий скептицизм по поводу создания «идеального» гетероперехода, тем более с теоретически предсказываемыми инжекционными свойствами. И в пионерских работа Р.Л.Андерсена по исследованию эпитаксиального ( [таксис] означает расположение в порядке, построение ) перехода Ge–GaAs с совпадающими постоянными кристаллической решётки отсутствовали доказательства инжекции неравновесных носителей в гетероструктурах.

Максимальный эффект ожидался при использовании гетеропереходов между полупроводником, служащим активной областью прибора, и более широкозонным полупроводником. В качестве наиболее перспективных в то время рассматривались системы GaP–GaAs и AlAs–GaAs. Для «совместимости» эти материалы в первую очередь должны были удовлетворять самому важному условию: иметь близкие значения постоянной кристаллической решётки.

Дело в том, что многочисленные попытки реализовать гетеропереход были безуспешными: ведь не только размеры элементарных ячеек кристаллических решёток полупроводников, составляющих переход, должны практически совпадать, но и их тепловые, электрические, кристаллохимические свойства должны быть близкими, как и их кристаллические и зонные структуры.

Такую гетеропару найти не удавалось. И вот за это, казалось бы, безнадёжное дело взялся Ж.И.Алфёров. Нужный гетеропереход, как оказалось, можно было формировать путём эпитаксиального выращивания, когда один монокристалл (вернее, его монокристаллическая плёнка) наращивался на поверхности другого монористалла буквально послойно – один монокристаллический слой за другим. К нашему времени разработано много методов такого выращивания. Это и есть те самые высокие технологии, которые обеспечивают не только процветание электронных фирм, но и безбедное существование целых стран.

Б.П.Захарченя вспоминал, что маленькая рабочая комната Ж.И.Алфёрова вся была завалена рулонами миллиметровой бумаги, на которой неутомимый Жорес Иванович с утра до вечера чертил диаграммы состав–свойство многофазных полупроводниковых соединений в поисках сопрягающихся кристаллических решёток. Для идеального гетероперехода подходили арсенид галлия (GaAs) и арсенид алюминия (AlAs), но последний мгновенно окислялся на воздухе, и о его использовании, казалось, не могло быть и речи. Однако природа щедра на неожиданные подарки, нужно лишь подобрать ключи к её кладовым, а не заниматься грубым взломом, к которому призывал лозунг «Мы не можем ждать милостей от природы, взять их у неё – наша задача». Такие ключи уже были подобраны замечательным специалистом по химии полупроводников, физтеховской сотрудницей Ниной Александровной Горюновой, подарившей миру знаменитые соединения A III B V . Занималась она и более сложными тройными соединениями. Жорес Иванович всегда с огромным пиететом относился к таланту Нины Александровны и сразу понял её выдающуюся роль в науке.

Первоначально была предпринята попытка создать двойную гетероструктуру GaP 0,15 As 0,85 –GaAs. И она была выращена методом газофазной эпитаксии, а на ней был сформирован лазер. Однако из-за небольшого несоответствия постоянных решётки он, как и лазеры на гомопереходах, мог работать только при температуре жидкого азота. Ж.И.Алфёрову стало ясно, что таким путём реализовать потенциальные преимущества двойных гетероструктур не удастся.

Непосредственно с Жоресом Ивановичем работал один из учеников Горюновой, Дмитрий Третьяков, талантливый учёный с богемной душой в её неповторимой российской версии. Автор сотен работ, воспитавший многих кандидатов и докторов наук, лауреат Ленинской премии – высшего в то время знака признания творческих заслуг, – не защищал никакой диссертации. Он сообщил Жоресу Ивановичу, что неустойчивый сам по себе арсенид алюминия абсолютно устойчив в тройном соединении AlGaAs, так называемом твёрдом растворе . Свидетельством этому были давно выращенные путём охлаждения из расплава Александром Борщевским, тоже учеником Н.А.Горюновой, кристаллы этого твёрдого раствора, хранившиеся у него в столе уже несколько лет. Примерно так в 1967 г. была найдена ставшая теперь классической в мире микроэлектроники гетеропара GaAs–AlGaAs.

Изучение фазовых диаграмм, кинетики роста в этой системе, а также создание модифицированного метода жидкофазной эпитаксии, пригодного для выращивания гетероструктур, вскоре привели к созданию гетероструктуры, согласованной по параметру кристаллической решётки. Ж.И.Алфёров вспоминал: «Когда мы опубликовали первую работу на эту тему, мы были счастливы считать себя первыми, кто обнаружил уникальную, фактически идеальную, решёточно-согласованную систему для GaAs». Однако почти одновременно (с отставанием на месяц!) и независимо гетероструктура Al x Ga 1–x As–GaAs была получена в США сотрудниками фирмы IBM .

С этого момента реализация главных преимуществ гетероструктур пошла стремительно. Прежде всего экспериментально были подтверждены уникальные инжекционные свойства широкозонных эмиттеров и эффект суперинжекции, продемонстрировано стимулированное излучение в двойных гетероструктурах, установлена зонная структура гетероперехода Al x Ga 1–x As, тщательно изучены люминесцентные свойства и диффузия носителей в плавном гетеропереходе, а также чрезвычайно интересные особенности протекания тока через гетеропереход, например, диагональные туннельно-рекомбинационные переходы непосредственно между дырками из узкозонной и электронами из широкозонной составляющих гетероперехода.

В то же время основные преимущества гетероструктур были реализованы группой Ж.И.Алфёрова:

– в низкопороговых лазерах на двойных гетероструктурах, работающих при комнатной температуре;

– в высокоэффективных светодиодах на одинарной и двойной гетероструктурах;

– в солнечных элементах на гетероструктурах;

– в биполярных транзисторах на гетероструктурах;

– в тиристорных p–n–p–n гетероструктурах.

Если возможность управления типом проводимости полупроводника с помощью легирования различными примесями и идея инжекции неравновесных носителей заряда были теми семенами, из которых выросла полупроводниковая электроника, то гетероструктуры давали возможность решить значительно более общую проблему управления фундаментальными параметрами полупроводниковых кристаллов и приборов, такими, как ширина запрещённой зоны, эффективные массы носителей заряда и их подвижности, показатель преломления, электронный энергетический спектр и т.д.

Идея полупроводниковых лазеров на p–n -переходе, экспериментальное наблюдение эффективной излучательной рекомбинации в p–n -структуре на основе GaAs с возможностью стимулированного излучения и создание лазеров и светоизлучающих диодов на p–n -переходах были теми зёрнами, из которых начала расти полупроводниковая оптоэлектроника.

В 1967 г. Жорес Иванович был избран заведующим сектором ФТИ. Тогда же он впервые побывал в короткой научной командировке в Англии, где обсуждались лишь теоретические аспекты физики гетероструктур, поскольку английские коллеги считали экспериментальные исследования неперспективными. Хотя в великолепно оборудованных лабораториях имелись все возможности для экспериментальных исследований, англичане даже не задумывались о том, что они могут сделать. Жорес Иванович со спокойной совестью тратил время для ознакомления с архитектурными и художественниками памятниками в Лондоне. Нельзя было вернуться и без свадебных подарков, поэтому пришлось посетить «музеи материальной культуры» – роскошные по сравнению с советскими западные магазины.


Невестой была Тамара Дарская, дочь актёра Воронежского театра музыкальной комедии Георгия Дарского. Она работала в Химках под Москвой в космической фирме академика В.П.Глушко. Свадьба состоялась в ресторане «Крыша» в гостинице «Европейская» – в то время это было вполне по карману кандидату наук. Семейный бюджет позволял и еженедельные полёты по маршруту Ленинград–Москва и обратно (даже студент на стипендию мог раз-другой в месяц слетать на самолёте Ту-104, поскольку билет стоил всего 11 рублей при тогдашнем официальном курсе 65 копеек за доллар). Через полгода супруги всё-таки решили, что Тамаре Георгиевне лучше переехать в Ленинград.

И уже в 1968 г. на одном из этажей «полимерного» корпуса Физтеха, где в эти годы располагалась лаборатория В.М.Тучкевича, «загенерил» первый в мире гетеролазер. После этого Ж.И.Алфёров сказал Б.П.Захарчене: «Боря, я гетеропереходирую всю полупроводниковую микроэлектронику!» В 1968–1969 гг. группой Ж.И.Алфёрова были практически реализованы все основные идеи управления электронными и световыми потоками в классических гетероструктурах на основе системы GaAs–AlAs и показаны преимущества гетероструктур в полупроводниковых приборах (лазерах, светодиодах, солнечных батареях и транзисторах). Важнейшим было, конечно, создание низкопороговых, работающих при комнатной температуре лазеров на двойной гетероструктуре, предложенной Ж.И.Алфёровым ещё в 1963 г. Американские конкуренты (М.Б.Паниш и И.Хаяши из Bell Telephone , Г.Крессель из RCA ), знавшие о потенциальных преимуществах двойных гетероструктур, не отважились на их реализацию и использовали в лазерах гомоструктуры. С 1968 г. реально началось очень жёсткое соревнование, прежде всего с тремя лабораториями известных американских фирм: Bell Telephone , IBM и RCA .

Доклад Ж.И.Алфёрова на Международной конференции по люминесценции в Ньюарке (США) в августе 1969 г., в котором приводились параметры низкопороговых, работающих при комнатной температуре лазеров на двойных гетероструктурах, произвёл на американских коллег впечатление разорвавшейся бомбы. Профессор Я.Панков из RCA, только что, за полчаса до доклада, сообщивший Жоресу Ивановичу, что, к сожалению, для его визита на фирму нет разрешения, сразу после доклада обнаружил, что оно получено. Ж.И.Алфёров не отказал себе в удовольствии ответить, что теперь у него нет времени, поскольку IBM и Bell Telephone уже пригласили посетить их лаборатории ещё до доклада. После этого, как писал И.Хаяши, в Bell Telephone удвоили усилия по разработке лазеров на двойных гетероструктурах.

Семинар в Bell Telephone , осмотр лабораторий и дискуссия (а американские коллеги явно не скрывали, в расчёте на взаимность, технологические детали, конструкции и приспособления) довольно чётко показали достоинства и недочёты разработок ЛФТИ. Наступившее вскоре соперничество за достижение непрерывного режима работы лазеров при комнатной температуре было редким в то время примером открытого соревнования лабораторий из двух антагонистических великих держав. Ж.И.Алфёров с сотрудниками выиграли это соревнование, опередив на месяц группу М.Паниша из Bell Telephone !

В 1970 г. Ж.И.Алфёров и его сотрудники Ефим Портной, Дмитрий Третьяков, Дмитрий Гарбузов, Вячеслав Андреев, Владимир Корольков создали первый полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре. Независимо о непрерывном режиме лазерной генерации в лазерах на двойных гетероструктурах (с алмазным теплоотводом) Ицуо Хаяши и Мортон Паниш сообщили в статье, направленной в печать лишь на месяц позже. Непрерывный режим лазерной генерации в Физтехе был реализован в лазерах с полосковой геометрией, для создания которых использовалась фотолитография, при этом лазеры устанавливались на медных теплоотводах, покрытых серебром. Самая низкая плотность порогового тока при комнатной температуре составляла 940 А/см 2 для широких лазеров и 2,7 кА/см 2 для полосковых. Реализация такого режима генерации вызвала взрыв интереса. В начале 1971 г. многие университеты и промышленные лаборатории в США, СССР, Великобритании, Японии, Бразилии и Польше начали исследование гетероструктур и приборов на их основе.

Большой вклад в понимание электронных процессов в гетеролазерах внёс теоретик Рудольф Казаринов. Время генерации первого лазера было коротким. Жорес Иванович признавался, что его хватило ровно на столько, чтобы измерить параметры, необходимые для статьи. Продление срока службы лазеров было делом довольно трудным, но оно было успешно решено усилиями физиков и технологов. Теперь обладатели плееров с компакт-дисками в большинстве своём не подозревают, что звуковая и видеоинформация считывается полупроводниковым гетеролазером. Такие лазеры используются во многих оптоэлектронных устройствах, но в первую очередь – в устройствах волоконно-оптической связи и различных телекоммуникационных систем. Нашу жизнь трудно представить без гетероструктурных светодиодов и биполярных транзисторов, без малошумящих транзисторов с высокой подвижностью электронов для высокочастотных применений, включая, в частности, системы спутникового телевидения. Вслед за лазером на гетеропереходах были созданы многие другие приборы, вплоть до преобразователей солнечной энергии.

Значение получения непрерывного режима работы лазеров на двойных гетеропереходах при комнатной температуре прежде всего связано с тем, что в это же время было создано оптическое волокно с малыми потерями. Это привело к рождению и бурному развитию волоконно-оптических систем связи. В 1971 г. эти работы были отмечены присуждением Ж.И.Алфёрову первой международной награды – золотой медали Баллантайна Франклиновского института в США. Особая ценность этой медали, как отмечал Жорес Иванович, заключается в том, что Франклиновский институт в Филадельфии присуждал медали и другим советским учёным: в 1944 г. академику П.Л.Капице, в 1974 г. академику Н.Н.Боголюбову, а в 1981 г. академику А.Д.Сахарову. Попасть в такую компанию – большая честь.

Присуждение Жоресу Ивановичу медали Баллантайна имеет предысторию, связанную с его другом. Одним из первых физтеховцев в 1963 г. в США попал Б.П.Захарченя. Он облетел почти всю Америку, встретился с такими светилами, как Ричард Фейнман, Карл Андерсон, Лео Сциллард, Джон Бардин, Уильям Фэрбэнк, Артур Шавлов. В Иллинойсском университете Б.П.Захарченя познакомился с Ником Холоньяком, создателем первого эффективного светодиода на арсениде-фосфиде галлия, излучающего свет в видимой области спектра. Ник Холоньяк – один из крупнейших американских учёных, ученик Джона Бардина, единственного в мире дважды лауреата Нобелевской премии по одной специальности (физике). Недавно он получил премию как один из основателей нового направления в науке и технике – оптоэлектроники.

Ник Холоньяк родился в США, куда ещё до Октябрьской революции эмигрировал из Галиции его отец, простой шахтёр. Он блистательно окончил Иллинойсский университет, и его имя золотой прописью занесено на специальную «Доску почёта» этого университета. Б.П.Захарченя вспоминал: «Белоснежная рубашка, галстук-бабочка, короткая стрижка по моде 60-х годов и, наконец, спортивная фигура (он поднимал штангу) делали его типичным американцем. Это впечатление ещё более укреплялось, когда Ник говорил на своём родном американском языке. Но вдруг он переходил на язык своего отца, и от американского джентльмена ничего не оставалось. Это был не русский язык, но удивительная смесь русского с русинским (близким к украинскому), сдобренная солёными шахтёрскими шуточками и крепкими крестьянскими выражениями, усвоенными от родителей. При этом профессор Холоньяк очень заразительно смеялся, на глазах превращаясь в озорного русинского парня».

В том далёком 1963 г., показывая Б.П.Захарчене под микроскопом миниатюрный светодиод, ярко сиявший зелёным, профессор Холоньяк говорил: «Подивись, Борис, на мое свитло. Нэкс тайм скажи там у вашем институте, может, кто захоче приихати сюда до Иллинойссу из ваших хлопцев. Я буду учить его робыть таки свитла».


Слева направо: Ж.И.Алфёров, Джон Бардин, В.М.Тучкевич, Ник Холоньяк (Иллинойсский университет, Урбана, 1974 г.)

Через семь лет в лабораторию к Нику Холоньяку приехал Жорес Алфёров (будучи уже знакомым с ним, – в 1967 г. Холоньяк посещал лабораторию Алфёрова в физтехе). Жорес Иванович не был тем «хлопцем», которому нужно учиться «робытъ свитла». Сам мог научить. Его приезд был очень удачным: Франклиновский институт в это время как раз присуждал очередную медаль Баллантайна за лучшие работы по физике. Лазеры были в моде, а новый гетеролазер, сулящий огромные практические перспективы, привлёк особое внимание. Конкуренты были, но публикации группы Алфёрова были первыми. Поддержка работ советских физиков такими авторитетами, как Джон Бардин и Ник Холоньяк, наверняка повлияла на решение комиссии. Очень важно в любом деле оказаться в нужном месте и в нужное время. Не окажись тогда Жорес Иванович в Штатах, не исключено, что эта медаль досталась бы конкурентам, хотя первым-то был он. Известно, что «чины людьми даются, а люди могут обмануться». В эту историю было вовлечено много американских учёных, для которых доклады Алфёрова о первом лазере на двойной гетероструктуре были полной неожиданностью.

Алфёров и Холоньяк стали близкими друзьями. В процессе разнообразных контактов (визиты, письма, семинары, телефонные разговоры), играющих важную роль в работе и жизни каждого, они регулярно обсуждают проблемы физики полупроводников и электроники, а также жизненные аспекты.

Практически казавшаяся счастливым исключением гетероструктура Al x Ga 1–x As была в дальнейшем бесконечно расширена многокомпонентными твёрдыми растворами – сначала теоретически, затем экспериментально (самый яркий пример – InGaAsP).


Космическая станция «Мир» с солнечными батареями на основе гетероструктур

Одним из первых опытов успешного применения гетероструктур в нашей стране стало использование солнечных батарей в космических исследованиях. Солнечные батареи на основе гетероструктур были созданы Ж.И.Алфёровым и сотрудниками ещё в 1970 г. Технология была передана в НПО «Квант», и солнечные элементы на основе GaAlAs устанавливались на многих отечественных спутниках. Когда американцы опубликовали свои первые работы, советские солнечные батареи уже летали на спутниках. Было развёрнуто их промышленное производство, а их 15-летняя эксплуатация на станции «Мир» блестяще доказала преимущества этих структур в космосе. И хотя прогноз резкого снижения стоимости одного ватта электрической мощности на основе полупроводниковых солнечных батарей пока не оправдался, в космосе самым эффективным источником энергии доныне безусловно являются солнечные батареи на гетероструктуpax соединений A III B V .

Препятствий на пути Жореса Алфёрова хватало. Как водится, нашим спецслужбам 70-х гг. не нравились его многочисленные заграничные премии, и его пытались не пускать за границу на международные научные конференции. Появились завистники, пытавшиеся перехватить дело и оттереть Жореса Ивановича от славы и средств, необходимых для продолжения и совершенствования эксперимента. Но его предприимчивость, молниеносная реакция и ясный ум помогали преодолевать все эти препятствия. Сопутствовала и «госпожа Удача».

1972 г. был особенно счастливым. Ж.И.Алфёрову и его ученикам-коллегам В.М.Андрееву, Д.З.Гарбузову, В.И.Королькову и Д.Н.Третьякову была присуждена Ленинская премия. К сожалению, в силу сугубо формальных обстоятельств и министерских игр этой вполне заслуженной награды были лишены Р.Ф.Казаринов и Е.Л.Портной. В том же году Ж.И.Алфёров был избран в Академию наук СССР.

В день присуждения Ленинской премии Ж.И.Алфёров был в Москве и позвонил домой, чтобы сообщить об этом радостном событии, но телефон не отвечал. Он позвонил родителям (с 1963 г. они жили в Ленинграде) и радостно сообщил отцу, что его сын – лауреат Ленинской премии, а в ответ услышал: «Что твоя Ленинская премия? У нас внук родился!» Рождение Вани Алфёрова было, безусловно, самой большой радостью 1972 г.

Дальнейшее развитие полупроводниковых лазеров было связано также с созданием лазера с распределённой обратной связью, предложенного Ж.И.Алфёровым в 1971 г. и реализованного несколько лет спустя в ФТИ.

Идея стимулированного излучения в сверхрешётках, высказанная в это же время Р.Ф.Казариновым и Р.А.Сурисом, была реализована четверть века спустя в Bell Telephone . Исследования сверхрешёток, начатые Ж.И.Алфёровым и соавторами в 1970 г., к сожалению, бурно развивались только на Западе. Работы по квантовым ямам и короткопериодным сверхрешёткам в короткое время привели к рождению новой области квантовой физики твёрдого тела – физике низкоразмерных электронных систем. Апогеем этих работ в настоящее время являются исследования нуль-мерных структур – квантовых точек. Получили широкое признание работы в этом направлении, проводимые учениками Ж.И.Алфёрова уже второго и третьего поколений: П.С.Копьёвым, Н.Н.Леденцовым, В.М.Устиновым, С.В.Ивановым. Н.Н.Леденцов стал самым молодым членом-корреспондентом Российской академии наук.

Полупроводниковыми гетероструктурами, в особенности двойными, включая квантовые ямы, проволоки и точки, сейчас занимаются две трети исследовательских групп, работающих в области физики полупроводников.

В 1987 г. Ж.И.Алфёров был избран директором ФТИ, в 1989 г. – председателем президиума Ленинградского научного центра АН СССР, а в апреле 1990 г. – вице-президентом Академии наук СССР. Впоследствии на эти посты он был переизбран уже в Российской академии наук.

Главным для Ж.И.Алфёрова в последние годы было сохранение Академии наук как высшей и уникальной научной и образовательной структуры России. Её хотели уничтожить в 20-е гг. как «наследие тоталитарного царского режима», а в 90-е гг. – как «наследие тоталитарного советского режима». Для её сохранения Ж.И.Алфёров согласился пойти депутатом в Государственную думу последних трёх созывов. Он писал: «Ради этого великого дела мы шли иногда на компромиссы с властью, но не с совестью. Всё, что создало человечество, оно создало благодаря науке. И если уж суждено нашей стране быть великой державой, то она ею будет не благодаря ядерному оружию или западным инвестициям, не благодаря вере в Бога или в президента, а благодаря труду её народа, вере в знание, в науку, благодаря сохранению и развитию научного потенциала и образования». Телевизионные трансляции заседаний Государственной думы неоднократно свидетельствовали о недюжинном общественно-политическом темпераменте и горячей заинтересованности Ж.И.Алфёрова в процветании страны в целом и науки в частности.

Среди других научных наград Ж.И.Алфёрова отметим Хьюлет-Паккардовскую премию Европейского физического общества, Государственную премию СССР, медаль Велькера; премию Карпинского, учреждённую в ФРГ. Ж.И.Алфёров – действительный член Российской академии наук, иностранный член Национальной инженерной академии и Академии наук США, член многих других зарубежных академий.

Будучи вице-президентом Академии наук и депутатом Государственной думы, Ж.И.Алфёров не забывает, что как учёный он вырос в стенах знаменитого Физико-технического института, основанного в Петрограде в 1918 г. выдающимся российским физиком и организатором науки Абрамом Фёдоровичем Иоффе. Этот институт дал физической науке яркое созвездие всемирно известных учёных. Именно в Физтехе Н.Н.Семёновым были проведены исследования цепных реакций, удостоенные впоследствии Нобелевской премии. Здесь работали выдающиеся физики И.В.Курчатов, А.П.Александров, Ю.Б.Харитон и Б.П.Константинов, вклад которых в решение атомной проблемы в нашей стране невозможно переоценить. В Физтехе начинали свою научную деятельность талантливейшие экспериментаторы – нобелевский лауреат П.Л.Капица и Г.В.Курдюмов, физики-теоретики редчайшего дарования – Г.А.Годов, Я.Б.Зельдович и нобелевский лауреат Л.Д.Ландау. Название института всегда будет ассоциироваться с именами одного из основателей современной теории конденсированного состояния Я.И.Френкеля, блестящих экспериментаторов Е.Ф.Гросса и В.М.Тучкевича (на протяжении многих лет возглавлявшего институт).

Ж.И.Алфёров по мере сил содействует развитию Физтеха. При ФТИ была открыта Физико-техническая школа и продолжен процесс создания на базе института специализированных учебных кафедр. (Первая кафедра такого рода – кафедра оптоэлектроники – была создана в ЛЭТИ ещё в 1973 г.) На основе уже существующей и вновь организованных базовых кафедр в Политехническом институте в 1988 г. был создан физико-технический факультет. Развитие академической системы образования в Санкт-Петербурге выразилось в создании медицинского факультета в Университете и комплексного Научно-образовательного центра ФТИ, объединившего школьников, студентов и учёных в одном прекрасном здании, которое можно с полным правом назвать Дворцом знаний. Используя возможности Государственной думы для широкого общения с влиятельными людьми, Ж.И.Алфёров «выбивал» деньги на создание Научно-образовательного центра из каждого премьер-министра (а они так часто меняются). Первый, наиболее существенный взнос сделал В.С.Черномырдин. Теперь огромное здание этого центра, построенного турецкими рабочими, красуется недалеко от Физтеха, наглядно показывая, на что способен предприимчивый человек, одержимый благородной идеей.

С детства Жорес Иванович приучен к выступлениям перед широкой аудиторией. Б.П.Захарченя вспоминает его рассказы о шумном успехе, который он снискал, читая с эстрады чуть ли не в дошкольном возрасте рассказ М.Зощенко «Аристократка»: «Я, братцы мои, не люблю баб, которые в шляпках. Ежели баба в шляпке, ежели чулочки на ней фильдекосовые...»

Десятилетним мальчиком Жорес Алфёров прочитал замечательную книгу Вениамина Каверина «Два капитана» и всю последующую жизнь следует принципу её главного героя Сани Григорьева: «Бороться и искать, найти и не сдаваться!»

Кто он – «вольный» или «свободный»?



Шведский король вручает Ж.И.Алфёрову Нобелевскую премию

Составил
В.В.РАНДОШКИН

по материалам:

Алфёров Ж.И. Физика и жизнь. – СПб.: Наука, 2000.

Алфёров Ж.И. Двойные гетероструктуры: Концепция и применения в физике, электронике и технологии. – Успехи физических наук, 2002, т. 172, № 9.

Наука и человечество. Международный ежегодник. – М., 1976.

Жорес Алфёров. Фото: РИА Новости / Игорь Самойлов

В понедельник, 14 ноября, в Санкт-Петербурге ректор петербургского Академического университета Жорес Алфёров . Его состояние не вызывает опасений у врачей.

Жорес Алфёров — российский лауреат Нобелевской премии по физике. Премию он получил в 2000 году за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов.

АиФ.ru приводит биографию Жореса Алфёрова.

Досье

В декабре 1952 года окончил Ленинградский государственный электротехнический институт им. В.И. Ульянова (Ленина).

Годы учебы Ж.И. Алфёрова в ЛЭТИ совпали с началом студенческого строительного движения. В 1949 г. он в составе студенческого отряда участвовал в строительстве Красноборской ГЭС, одной из первых сельских электростанций Ленинградской области.

Ещё в студенческие годы Ж. И. Алфёров начал свой путь в науке. Под руководством доцента кафедры основ электровакуумной техники Наталии Николаевны Созиной он занимался исследованиями полупроводниковых плёночных фотоэлементов. Его доклад на институтской конференции студенческого научного общества (СНО) в 1952 г. был признан лучшим, за него физик получил первую в своей жизни научную премию: поездку на строительство Волго-Донского канала. Несколько лет он являлся председателем СНО факультета электронной техники.

После окончания ЛЭТИ Алфёров был направлен на работу в Ленинградский физико-технический институт, где стал работать в лаборатории В. М. Тучкевича . Здесь при участии Ж. И. Алфёрова были разработаны первые советские транзисторы.

В январе 1953 поступил в ФТИ им. А. Ф. Иоффе, где защитил кандидатскую (1961) и докторскую (1970) диссертации.

В начале 60-х годов Алфёров начал заниматься проблемой гетеропереходов. Открытие им идеальных гетеропереходов и новых физических явлений — «сверхинжекции», электронного и оптического ограничения в гетероструктурах — позволило кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике.

Благодаря исследованиям Ж. И. Алфёрова фактически создано новое направление: гетеропереходы в полупроводниках.

Своими открытиями учёный заложил основы современной информационной техники, в основном через разработку быстрых транзисторов и лазеров. Созданные на базе исследований Алфёрова приборы и устройства буквально произвели научную и социальную революцию. Это лазеры, передающие информационные потоки посредством оптоволоконных сетей интернета, это технологии, лежащие в основе мобильных телефонов, устройства, декорирующие товарные ярлыки, запись и воспроизведение информации на CD-дисках и многое другое.

Под научным руководством Алфёрова были выполнены исследования солнечных элементов на основе гетероструктур, что привело к созданию фотоэлектрических преобразователей солнечного излучения в электрическую энергию, коэффициент полезного действия которых приблизился к теоретическому пределу. Они оказались незаменимыми для энергообеспечения космических станций, а в настоящее время рассматриваются как один из основных альтернативных источников энергии взамен убывающим запасам нефти и газа.

Благодаря фундаментальным работам Алфёрова были созданы светодиоды на гетероструктурах. Светодиоды белого света благодаря своей высокой надёжности и эффективности рассматриваются как источники освещения нового типа и в ближайшем будущем заменят традиционные лампы накаливания, что будет сопровождаться гигантской экономией электроэнергии.

С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 2003 году Алфёров оставил пост руководителя ФТИ им. А. Ф. Иоффе и до 2006 года занимал пост председателя учёного совета института. Однако Алфёров сохранил влияние на ряд научных структур, среди которых: ФТИ им. А. Ф. Иоффе, НТЦ « Центр микроэлектроники и субмикронных гетероструктур» , научно-образовательный комплекс (НОК) Физико-технического института и физико-технический лицей.

С 1988 г. (с момента основания) — декан физико-технического факультета СПбГПУ.

В 1990-1991 годах — вице-президент АН СССР, председатель Президиума Ленинградского научного центра.

10 октября 2000 года стало известно, что Жорес Алфёров стал лауреатом Нобелевской премии по физике за развитие полупроводниковых гетероструктур для высокоскоростной и оптоэлектроники. Саму премию он разделил с двумя другими физиками: Гербертом Крёмером и Джеком Килби .

С 2003 года — председатель Научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Академик АН СССР (1979), затем РАН, почётный академик Российской академии образования. Вице-президент РАН, председатель президиума Санкт-Петербургского научного центра РАН.

Являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению.

5 апреля 2010 года объявлено о том, что Алфёров назначен научным руководителем инновационного центра в Сколково.

С 2010 года — сопредседатель Консультативного научного Совета Фонда «Сколково».

В 2013 году баллотировался на пост президента РАН. Получив 345 голосов, занял второе место.

Автор более 500 научных работ, в том числе 4 монографий, более 50 изобретений. Среди его учеников более сорока кандидатов и десяти докторов наук. Наиболее известные представители школы: чл.-корреспонденты РАН Д. З. Гарбузов и Н. Н. Леденцов, доктора физ.-мат. наук: В. М. Андреев, В. И. Корольков, С. Г. Конников, С. А. Гуревич, Ю. В. Жиляев, П. С. Копьев и др.

О проблемах современной науки

Обсуждая с корреспондентом газеты «Аргументы и факты» проблемы современной российской науки, заметил: «Отставание в науке — не следствие какой-либо слабости русских учёных или проявления национальной черты, а результат дурацкого реформирования страны».

После начавшейся в 2013 году реформы РАН Алфёров неоднократно высказывал отрицательное отношение к данному законопроекту. В обращении учёного к Президенту РФ говорилось:

«После жесточайших реформ 1990-х годов, многое утратив, РАН тем не менее сохранила свой научный потенциал гораздо лучше, чем отраслевая наука и вузы. Противопоставление академической и вузовской науки совершенно противоестественно и может проводиться только людьми, преследующими свои очень странные политические цели, весьма далёкие от интересов страны. Закон о реорганизации РАН и других государственных академий наук отнюдь не решает задачу повышения эффективности научных исследований».

Политическая и общественная деятельность

1944 — член ВЛКСМ.

1965 — член КПСС.

1989-1992 — народный депутат СССР.

1995-1999 — депутат Государственной Думы Федерального Собрания РФ 2 созыва от движения «Наш дом — Россия» (НДР), председатель подкомитета по науке Комитета по науке и образованию Госдумы, член фракции НДР, с 1998 — член депутатской группы « Народовластие» .

1999-2003 — депутат Государственной Думы Федерального Собрания РФ 3 созыва от КПРФ, член фракции КПРФ, член Комитета по образованию и науке.

2003-2007 — депутат Государственной Думы Федерального Собрания РФ 4 созыва от КПРФ, член фракции КПРФ, член Комитета по образованию и науке.

2007-2011 — депутат Государственной Думы Федерального Собрания РФ 5 созыва от КПРФ, член фракции КПРФ, член Комитета Государственной Думы по науке и наукоёмким технологиям. Старейший депутат Государственной Думы Федерального Собрания РФ 5 созыва.

2012-2016 — депутат Государственной Думы Федерального Собрания РФ 6 созыва от КПРФ, член Комитета Государственной Думы по науке и наукоёмким технологиям.

С 2016 года — депутат Государственной Думы Федерального Собрания РФ 7 созыва от КПРФ. Старейший депутат Государственной Думы Федерального Собрания РФ 7 созыва.

Член редакционного совета радиогазеты «Слово».

Председатель Редакционной коллегии журнала «Нанотехнологии. Экология. Производство».

Учредил Фонд поддержки образования и науки для помощи талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

В 2016 году подписал письмо с призывом к Greenpeace, Организации Объединённых Наций и правительствам всего мира прекратить борьбу с генетически модифицированными организмами (ГМО).

Награды и звания

Труды Ж. И. Алфёрова отмечены Нобелевской премией, Ленинской и Государственными премиями СССР и России, премией им. А. П. Карпинского (ФРГ), Демидовской премией, премией им. А. Ф. Иоффе и золотой медалью А. С. Попова (РАН), Хьюлетт-Паккардовской премией Европейского физического общества, медалью Стюарта Баллантайна Франклинского института (США), премией Киото (Япония), многими орденами и медалями СССР, России и зарубежных стран.

Жорес Иванович избран пожизненным членом института Б. Франклина и иностранным членом Национальной академии наук и Национальной инженерной академии США, иностранным членом академий наук Беларуси, Украины, Польши, Болгарии и многих других стран. Он является почётным гражданином Санкт-Петербурга, Минска, Витебска и других городов России и зарубежья. Почётным доктором и профессором его избрали учёные советы многих университетов России, Японии, Китая, Швеции, Финляндии, Франции и других стран.

Астероид (№ 3884) Alferov, открытый 13 марта 1977 года Н. С. Черных в Крымской астрофизической обсерватории был назван в честь учёного 22 февраля 1997 года.

Жореса Алферова часто называют последним великим советским ученым. В 2000 году он получил Нобелевскую премию по физике за разработки в области полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов. Благодаря Алферову мир получил смартфоны - такими, какими мы их знаем, и интернет, а благодаря гетероструктурам все начали пользоваться CD-дисками.

После развала Советского союза Алферов был одним из немногих российских нобелевских лауреатов, кроме него, премию получали Виталий Гинзбург, а также физики Алексей Абрикосов и Константин Новоселов, давно не занимающиеся научной работой в России.

Алферов как физик

Выпускник одного из старейших вузов России - Ленинградского электротехнического института имени В. И. Ульянова (Ленина) (ЛЭТИ) - Жорес Алферов увлекался наукой еще с ранних лет. Окончил в Минске школу с золотой медалью, после чего по настоянию своего преподавателя по физике пошел в Белорусский политехнический институт (БНТУ), отучился там несколько лет и понял, что уровня белорусских преподавателей ему явно недостаточно.

С 1953 года работал в Физико-техническом институте имени А. Ф. Иоффе - начиная с младшего научного сотрудника, а через почти 30 лет, в 1987 году, уже возглавлял его. Там Алферов принимает участие в разработках первого в СССР транзистора, занимается исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 1991 году Жорес Алферов занял пост вице-президента Российской академии наук - в этот период он как раз занимался исследованиями в области полупроводниковых гетероструктур.

Ленинград. Академик АН СССР Жорес Алферов на лекции в школе «Физика и электроника», созданной для старшеклассников. Фото: Юрий Белинский/ТАСС

Алферов практически сразу после создания Инновационного центра «Сколково» - в 2010 году - назначен его научным руководителем и сопредседателем консультативного научного совета Фонда. Сразу же после своего назначения Алферов выступил за то, чтобы консультативный совет «Сколково» собирался не только на территории центра, но и в других университетах - как российских, так и зарубежных - для сравнения условий с другими научными центрами и увеличения связей.

За что Жорес Алферов получил Нобелевскую премию

В 2000 году Нобелевскую премию по физике получили Жорес Алферов и Герберт Кремер за разработки в области быстродействующих транзисторов и лазеров. Эти исследования легли в основу современной информационной компактной техники. Алферов и Кремер открыли быстродействующие опто- и микроэлектронные устройства на базе полупроводниковых гетероструктур: быстродействующие транзисторы, лазерные диоды для систем передачи информации в оптоволоконных сетях, мощные эффективные светоизлучающие диоды, способные в будущем заменить лампы накаливания.

Большинство приборов, работающих по принципу полупроводников, используют р-n-переход, образующийся на границе между частями одного и того же полупроводника с разными типами проводимости, создаваемыми за счет внедрения соответствующих примесей. Гетеропереход позволил использовать разные по своему химическому составу полупроводники с разной шириной запрещенной зоны. Это позволило создавать электронные и оптоэлектронные приборы крайне малого размера - вплоть до атомных масштабов.

Жорес Алферов создал гетеропереход из полупроводников с близкими периодами решетки - GaАз и тройного соединения определенного состава АlGаАs. «Я хорошо помню эти поиски (поиски подходящей гетеропары - “Хайтек”). Они напоминали мне любимую мною в юности повесть Стефана Цвейга “Подвиг Магеллана”. Когда я заходил к Алферову в его маленькую рабочую комнату, она вся была завалена рулонами миллиметровой бумаги, на которой неутомимый Жорес с утра до вечера чертил диаграммы в поисках сопрягающихся кристаллических решеток. После того, как Жорес с командой своих сотрудников сделал первый лазер на гетеропереходе, он говорил мне: “Боря, я гетеропереходирую всю полупроводниковую микроэлектронику”», - рассказывал об этом периоде жизни Алферова академик Борис Захарченя.

В дальнейшем исследования, благодаря которым удалось получить гетеропереходы с помощью эпитаксиального роста кристаллической пленки одного полупроводника на поверхности другого, позволили группе Алферова еще больше миниатюризировать устройства - вплоть до нанометровых. За эти разработки в области наноструктур Жорес Алферов и получил Нобелевскую премию по физике в 2000 году.

Алферов - общественный деятель и коммунист

Трудно представить себе фигуру в России, более критикующую состояние современной российской науки - реформу РАН, низкие зарплаты для преподавателей, отток кадров из страны и систему образования, при этом называющего себя «настоящим патриотом» и «представителем великого славянского народа», чем Жорес Алферов. По этому масштабу Алферова можно сравнить разве что с Александром Солженицыным - тоже нобелевским лауреатом, который хоть и крайне негативно относился к существующей государственной системе, все равно был большим патриотом и будто бы понимал многие общественные процессы явно глубже, чем люди, занимающиеся ими профессионально.

Жореса Алферова в СМИ часто называли чуть ли не последним настоящим коммунистом в России, публично выступающим с такой позицией. Алферов неоднократно говорил, что развал СССР - «самая большая личная трагедия, а в 1991 году улыбка навсегда сошла с моего лица».

Несмотря на пост в Госдуме - в ней он с 1995 года до самой смерти занимался делами Комитета по науке и технологиям, а также постоянную поддержку партии КПРФ, Жорес Алферов оставался беспартийным. Это он объяснял своим нежеланием идти в политику, а пост депутата - единственной возможностью влиять на законодательство в научной области. Он выступал против проведения реформы РАН и перевод научных институтов в университеты по западной модели. По словам самого Алферова, России больше бы подошла китайская научная модель, где отчасти фундаментальные научные институты интегрировались с системой высшего образования, но сразу же сильно расширились и значительно омолодились.

Был одним из самых ярых противников клерикализма: считал, что теология не может быть научной дисциплиной, а в школе ни в коем случае нельзя вводить теорию православной культуры - лучше историю религии. На вопросы, существуют ли у религии и науки какие-то общие места, рассказывал о морали и высоких материях, но всегда добавлял, что есть важное различие. Основа религии - вера, а основа науки - знание, после чего добавлял, что научных основ у религии нет, хотя часто ведущие священники хотели бы, чтобы кто-нибудь их все-таки нашел.

Жорес Алферов во многих своих интервью сравнивал количество высокотехнологичного электронного производства в СССР и России, приходя всегда к грустному выводу, что нет сейчас наиболее важных задач, чем возрождение этих производств, утраченных в 90-е годы. Только это позволило бы стране слезть с нефтяной и углеводородной иглы.

При этом тут требуется очень серьезная оговорка. Несмотря на весь патриотизм и коммунизм Алферова, который будто бы автоматически подразумевает принципы великодержавия, он рассуждал только с точки зрения развития науки. Всегда говорил, что наука по своей природе интернациональна - не может быть никакой национальной физики и химии. Однако доход от нее очень часто идет в бюджет той или иной страны, - а передовые страны только те, где развиты разработки и технологии на основе собственных исследований.

После получения Нобелевской премии по физике (в 2000 году ее размер составлял около $1 млн - «Хайтек») решил вложить часть в собственный фонд поддержки технологий и науки. Являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по ее присуждению. Считается, что присуждение этой премии самому Алферову в 2005 году стало одной из причин оставления им поста.