Титан и титановые сплавы. Титан металл

Все, что нужно знать о титане, а также о хроме и вольфраме

Многих интересует вопрос: какой самый твердый металл в мире? Это титан. Этому твердому веществу и будет посвящена большая часть статьи. Также немного ознакомимся и с такими твердыми металлами как хром и вольфрам.

9 интересных фактов о титане

1. Существует несколько версий, почему металл получил такое название. Согласно одной теории, его назвали в честь Титанов, бесстрашных сверхъестественных существ. По другой версии, название пошло от Титании, королевы фей.
2. Титан был открыт в конце XVIII века немецким и английским химиком.
3. Титан долго не использовали в промышленности из-за его природной хрупкости.
4. В начале 1925 года, после серии опытов, химики получили титан в чистом виде.
5. Стружка от титана легко воспламеняется.
6. Это один из самых легких металлов.
7. Титан может расплавиться только при температуре выше 3200 градусов.
8. Закипает при температуре 3300 градусов.
9. Титан имеет серебряный цвет.

История открытия титана

Металл, который впоследствии назвали титан, открыли двое ученых – англичанин Уильям Грегор и немец Мартин Грегор Клапрот. Ученые работали параллельно, и между собой не пересекались. Разница между открытиями составляет 6 лет.

Уильям Грегор дал своему открытию название — менакин.

Более чем через 30 лет был получен первый сплав титана, который оказался чрезвычайно хрупким, и не мог нигде использоваться. Считается, что лишь в 1925 году был выделен титан в чистом виде, который стал одним из самых востребованных в промышленности металлов.

Доказано, что российский ученый Кириллов в 1875 году сумел добыть чистый титан. Он опубликовал брошюру, в которой подробно описал свою работу. Однако исследования малоизвестного россиянина остались незамеченными.


Общая информация о титане

Титановые сплавы – спасение для механиков и инженеров. Например, корпус самолета изготовлен из титана. Во время полета он достигает скорости в несколько раз больше, чем скорость звука. Титановый корпус нагревается до температуры выше 300 градусов, и не плавится.

Металл замыкает десятку лидеров «Самых распространенных металлов в природе». Большие залежи обнаружены в ЮАР, Китае и , немало титана в Японии, Индии, на Украине.

Общее количество мирового запаса титанов насчитывает более 700 миллионов тонн. Если темпы добычи останутся прежними, титана хватит еще на 150-160 лет.

Крупнейший производитель самого твердого металла в мире – российское предприятие «ВСМПО-Ависма», которое удовлетворяет треть мировых потребностей.


Свойства титана

1. Коррозийная стойкость.
2. Высокая механическая прочность.
3. Небольшая плотность.

Атомный вес титана составляет 47, 88 а.е.м, порядковый номер в химической таблице Менделеева – 22. Внешне он очень похож на сталь.

Механическая плотность металла в 6 раз больше, чем у алюминия, в 2 раза выше, чем у железа. Он может соединиться с кислородом, водородом, азотом. В паре с углеродом металл образует невероятно твердые карбиды.

Теплопроводность титана в 4 раза меньше, чем у железа, и в 13 раз – чем у алюминия.



Процесс добычи титана

В земле титана большое количество, однако, извлечь его из недр стоит немалых денег. Для выработки используют иодидный метод, автором которого считается Ван Аркель де Бур.

В основе метода – способность металла сочетаться с иодом, после разложения этого соединения можно получить чистый, свободный от посторонних примесей титан.

Самые интересные вещи из титана:

  • протезы в медицине;
  • платы мобильных устройств;
  • ракетные комплексы для освоения Космоса;
  • трубопроводы, насосы;
  • навесы, карнизы, наружная обшивка зданий;
  • большинство деталей (шасси, обшивка).

Сферы применения титана

Титан активно используют в военной сфере, медицине, ювелирном деле. Ему дали неофициальное название «металл будущего». Многие говорят, что он помогает превратить мечту в реальность.

Самый твердый металл в мире изначально стали применять в военной и оборонной сфере. Сегодня основным потребителем титановых изделий является авиастроение.

Титан – универсальный конструкционный материал. Долгие годы он применялся для создания турбин самолетов. В авиационных двигателях из титана делают элементы вентилятора, компрессоры, диски.

Конструкция современного летательного аппарата может содержать до 20 тонн титанового сплава.

Основные сферы применения титана в авиастроении:

  • продукция пространственной формы (окантовка дверей, люков, обшивка, настил пола);
  • агрегаты и узлы, которые подвержены сильным нагрузкам (кронштейны крыльев, стойки шасси, гидроцилиндры);
  • части двигателя (корпус, лопатки для компрессоров).

Благодаря титану человек смог пройти сквозь звуковой барьер, и ворваться в Космос. Его использовали для создания пилотируемых ракетных комплексов. Титан может выдержать космическую радиацию, перепады температур, скорость движения.

Этот металл имеет небольшую плотность, что важно в судостроительной сфере. Изделия из титана легкие, а значит, снижается вес , увеличивается его маневренность, скорость, дальность хода. Если корпус корабля обшить титаном, его не нужно будет красить много лет – титан не ржавеет в морской воде (коррозийная стойкость).

Чаще всего этот металл в судостроении используют для изготовления турбинных двигателей, паровых котлов, конденсаторных труб.


Нефтедобывающая отрасль и титан

Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю – свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины.

Не так давно титан стал активно использоваться для создания скважин на морских шельфах. Специалисты применяют титановые сплавы в качестве оборудования:

  • нефтедобывающие установки;
  • сосуды высокого давления;
  • глубоководные насосы, трубопроводы.

Титан в спорте, медицине

Титан крайне популярен в спортивной сфере из-за своей прочности и легкости. Несколько десятилетий назад из титановых сплавов сделали велосипед, первый спортивный инвентарь из самого твердого материала в мире. Современный велосипед состоит из титанового корпуса, такого же тормоза и пружин сидений.

В Японии создали титановые клюшки для игры в гольф. Эти приспособления легкие и долговечные, но крайне дорогие по цене.

Из титана делают большинство предметов, которые лежат в рюкзаке альпинистов и путешественников – столовая посуда, наборы для приготовления еды, стойки для укрепления палаток. Титановые ледорубы – очень востребованный спортивный инвентарь.

Этот металл очень востребован в медицинской отрасли. Из титана делают большинство хирургических инструментов – легких и удобных.

Еще одна сфера применения металла будущего – создание протезов. Титан превосходно «сочетается» с организмом человека. Медики назвали этот процесс «настоящее родство». Конструкции из титана безопасны для мышц и костей, редко вызывают аллергическую реакцию, не разрушаются под воздействием жидкости в организме. Протезы из титана стойкие, выдерживают огромные физические нагрузки.

Титан – удивительный металл. Он помогает человеку достичь невиданных высот в различных сферах жизни. Его любят и почитают за прочность, легкость и долгие годы службы.



Одним из самых твердых металлов является и хром

Интересные факты о хроме

1. Название металла происходит от греческого слова «chroma», что в переводе означает краска.
2. В естественной среде хром в чистом виде не встречается, а только в виде хромистого железняка, двойного оксида.
3. Самые большие месторождения металла расположены в ЮАР, России, Казахстане и Зимбабве.
4. Плотность металла – 7200кг/м3.
5. Хром плавится при температуре 1907 градусов.
6. Закипает при температуре 2671 градусов.
7. Совершенно чистый без примесей хром характеризуется тягучестью и вязкостью. В сочетании с кислородом, азотом или водородом металл становится ломким и очень твердым.
8. Этот металл серебристо-белого цвета открыл француз Луи Никола Воклен в конце XVIII века.


Свойства металла хрома

У хрома очень высокая твердость, им можно разрезать стекло. Он не окисляется воздухом, влагой. Если металл нагреть, окисление произойдет только на поверхности.

В год потребляют более 15 000 тон чистого хрома. Лидером по производству чистейшего хрома считается английская компания «Bell Metals».

Больше всего хрома потребляют в США, западных странах Европы и Японии. Рынок хрома нестабилен, и цены охватывают широкий диапазон.


Сферы использования хрома

Чаще всего применяется для создания сплавов и гальванических покрытий (хромирование на транспорт).

Хром добавляют в сталь, что улучшает физические свойства металла. Эти сплавы – наиболее востребованы в черной металлургии.

Сталь самой популярной марки состоит из хрома (18%) и никеля (8%). Такие сплавы отлично противостоят окислению, коррозии, прочны даже при высоких температурах.

Из стали, которая содержит треть хрома, изготавливают нагревательные печи.

Что еще делают из хрома?

1. Стволы огнестрельного оружия.
2. Корпус подводных лодок.
3. Кирпичи, которые используют в металлургии.


Еще одним чрезвычайно твердым металлом является вольфрам

Интересные факты о вольфраме

1. Название металла в переводе с немецкого («Wolf Rahm») означает «пена волка».
2. Это наиболее тугоплавкий металл в мире.
3. Вольфрам имеет светло-серый оттенок.
4. Металл был открыт в конце XVIII века (1781г) шведом Карлом Шееле.
5. Вольфрам плавится при температуре 3422 градусов, кипит – при 5900.
6. Металл имеет плотность 19.3 г/см³.
7. Атомная масса – 183.85, элемент VI группы в периодической системе Менделеева (порядковый номер – 74).


Процесс добычи вольфрама

Вольфрам относится к большой группе редких металлов. В нее входит также рубидий, молибден. Для этой группы характерна небольшая распространенность металлов в природе и малые масштабы потребления.

Получение вольфрама состоит из 3 этапов:

  • отделение металла от руды, скапливание его в растворе;
  • выделение соединения, его очистка;
  • выделение чистого металла из готового химического соединения.
  • Исходный материал для получения вольфрама – шеелит и вольфрамит.


Сферы применения вольфрама

Вольфрам является основой большинства прочных сплавов. Из него делают авиационные двигатели, детали электровакуумных приборов, нити накаливания.
Высокая плотность металла позволяет использовать вольфрам для создания баллистических ракет, пуль, противовесы, артиллерийские снаряды.

Соединения на основе вольфрама применяют для обработки других металлов, в горнодобывающей промышленности (бурение скважин), лакокрасочной, текстильной сфере (как катализатор органического синтеза).

Из сложных вольфрамовых соединений делают:

  • проволоки – используются в нагревательных печах;
  • ленты, фольгу, пластины, листы – для прокатки и плоской ковки.


Титан, хром и вольфрам возглавляют список «Самые твердые металлы в мире». Их используют во многих сферах деятельности человека – авиа и ракетостроении, военной области, строительстве, и при этом, это далеко не полный спектр применения металлов.

Титан и сплавы на его основе широко используются в самых разных сферах. Прежде всего, титановые сплавы нашли широкое применение в строительстве различной техники благодаря своей высокой коррозийной стойкости, механической прочности, небольшой плотности, жаропрочности и множеству других характеристик. Рассматривая свойства и применение титана, нельзя не отметить его довольно высокую стоимость. Однако она в полной мере компенсируется характеристиками и долговечностью материала.

Титан имеет высокую прочность и температуру плавления, отличается от других металлов долговечностью.

Основные свойства титана

Титан находится в IV группе четвертого периода периодической системы химических элементов. В самых устойчивых и наиболее важных соединениях элемент является четырехвалентным. Внешне титан напоминает сталь. Является переходным элементом. Температура плавления достигает почти 1700°, а кипения — 3300°. Что касается такого свойства, как скрытая теплота плавления и испарения, то у титана она практически в 2 раза превышает аналогичный показатель для железа.

Имеет 2 аллотропические модификации:

  1. Низкотемпературную, которая способна существовать до температуры в 882,5°.
  2. Высокотемпературную, устойчивую от температуры в 882,5° до температуры плавления.

Такие свойства, как удельная теплоемкость и плотность, располагают титан между двумя материалами с наиболее широким конструкционным использованием: железом и алюминием. Механическая прочность титана почти в 2 раза превышает эту характеристику у чистого железа и практически в 6 раз у алюминия. Однако свойства титана таковы, что он способен поглощать в больших количествах водород, кислород и азот, что негативно отражается на пластических характеристиках материала.

Материал характеризуется очень низкой теплопроводностью. Для сравнения, у железа она выше в 4 раза, а у алюминия в 12. Что касается такого свойства, как коэффициент термического расширения, то при комнатной температуре он имеет относительно низкое значение и возрастает с увеличением температуры.

Титан имеет малые модули упругости. При повышении температуры до 350° они начинают уменьшаться практически по линейному закону. Именно этот момент является существенным недостатком материала.

Титан характеризуется довольно большим значением удельного электросопротивления. Оно может колебаться в достаточно широких пределах и зависит от содержания примесей.

Титан является парамагнитным материалом. Для таких веществ характерно снижение магнитной восприимчивости в процессе нагревания. Однако титан является исключением — при повышении температуры его магнитная восприимчивость значительно возрастает.

Сферы применения титана

Медицинские инструменты из титанового сплава отличаются высокой коррозионной прочностью, биологической стойкостью и пластичностью.

Свойства материала обеспечивают довольно широкий спектр сфер его применения. Так, в больших объемах сплавы титана используются в строении судов и различной техники. Налажено применение материала в качестве легирующей добавки к сталям высокого качества и в качестве раскислителя. Сплавы с никелем нашли применение в технике и медицине. Такие соединения имеют уникальные свойства, в частности, они обладают памятью формы.

Налажено применение компактного титана в производстве деталей электровакуумных приборов, использующихся в условиях высоких температур. Свойства технического титана позволяют использовать его в производстве клапанов, трубопроводов, насосов, арматуры и других изделий, создаваемых для эксплуатации в агрессивных условиях.

Сплавы характеризуются недостаточной теплопрочностью, однако имеют высокую коррозийную стойкость. Это позволяет использовать различные сплавы на основе титана в химической сфере. К примеру, материал применяется в изготовлении насосов для прокачки серной и соляной кислоты. На сегодняшний день только сплавы на основе этого материала можно использовать в производстве разного рода оборудования для хлорной промышленности.

Использование титана в транспортной промышленности

Сплавы на основе этого материала используются при изготовлении бронетанковой части. А замена разнообразных конструкционных элементов, которые используются в транспортной промышленности, позволяет снижать расход топлива, увеличивать полезную грузоподъемность, повышать предел усталости изделий и улучшать множество других характеристик.

При производстве оборудования для химической промышленности из титана самое важное свойство — коррозионная стойкость металла.

Материал хорошо подходит для использования в строительстве железнодорожного транспорта. Одна из главных задач, которую нужно решить на железных дорогах, связана со снижением мертвого груза. Использование прутков и листов из титана позволяет существенно снизить общую массу состава, уменьшить размеры букс и шеек, сэкономить в тяге.

Вес имеет довольно существенное значение и для прицепного транспорта. Использование титана вместо стали при производстве колес и осей тоже позволяет существенно повысить полезную грузоподъемность.

Свойства материала делают возможным его использование в автомобилестроении. Материал характеризуется оптимальным сочетанием прочностных и весовых свойств для систем отведения отработанных газов и витых пружин. Применение титана и его сплавов позволяет существенно снизить объем отработанных газов, уменьшить затраты топлива и расширить применение лома и производственных отходов путем их переплава. Материал и содержащие его сплавы имеет множество преимуществ по сравнению с прочими используемыми решениями.

Главной задачей разработки новых деталей и конструкций является уменьшение их массы, от которой в той или иной степени зависит движение самого транспортного средства. Снижение веса движущихся узлов и частей делает потенциально возможным сокращение затрат топлива. Детали из титана неоднократно доказывали свою надежность. Они довольно широко применяются в авиакосмической промышленности и конструкциях гоночных автомобилей.

Использование этого материала позволяет не только уменьшить вес деталей, но и решить вопрос снижения объема отработанных газов.

Использование титана и его сплавов в сфере строительства

В строительстве широко используется сплав титана с цинком. Этот сплав характеризуется высокими механическими показателями и устойчивостью к коррозии, отличается высокой жесткостью и пластичностью. В составе сплава содержится до 0,2% легирующих добавок, выполняющих функции модификаторов структуры. Благодаря алюминию и меди обеспечивается требуемая пластичность. Кроме того, использование меди позволяет повысить предельную прочность материала на растяжение, а сочетание химических элементов способствует снижению коэффициента расширения. Сплав применяется и для производства длинных лент и листов с хорошими эстетическими характеристиками.

Титан часто используется в космических технологиях благодаря его легкости, прочности и тугоплавкости.

Среди главных качеств сплава титана с цинком, важных конкретно для строительства, можно отметить такие химические и физические свойства, как высокая устойчивость к коррозии, хороший внешний вид и безопасность для человеческого здоровья и окружающей среды.

Материал отличается хорошей пластичностью, без проблем поддается глубокой вытяжке, что позволяет использовать его в кровельных работах. У сплава нет никаких проблем с пайкой. Именно поэтому различные объемные конструкции и нестандартные архитектурные элементы вроде куполов и шпилей изготавливаются из цинк-титана, а не меди или оцинкованной стали. В решении подобных задач данный сплав является незаменимым.

Сфера использования сплава очень широка. Его применяют в фасадных и кровельных работах, из него изготавливаются изделия различной конфигурации и практически любой сложности, он широко применяется в производстве разнообразных декоративных изделий типа водостоков, отливов, кровельных коньков и т.д.

Этот сплав отличается очень продолжительным сроком службы. Более столетия он не будет требовать покраски и частых текущих ремонтных работ. Также среди существенных преимуществ материала следует выделить его способность восстанавливаться. Несущественные повреждения в виде царапин от веток, птиц и т.п. через какое-то время устраняются сами по себе.

Требования к строительным материалам становятся все более серьезными и строгими. Исследовательские компании ряда стран изучали почву вокруг зданий, построенных с использованием сплава цинка и титана. Результаты исследований подтвердили, что материал является полностью безопасным. Он не имеет канцерогенных свойств и не вредит человеческому здоровью. Цинк-титан является негорючим стройматериалом, что дополнительно повышает безопасность.

С учетом всех перечисленных положительных характеристик такой строительный материал в эксплуатации приблизительно в 2 раза дешевле, чем кровельная медь.

У сплава две степени окисления. С течением времени он меняет цвет и теряет металлический блеск. Сначала цинк-титан становится светло-серым, а еще через некоторое время приобретает благородный темно-серый оттенок. В настоящее время материал намеренно подвергается химическому старению.

Использование титана и его сплавов в медицине

Титан отлично совместим с человеческой тканью, поэтому активно применяется в области эндопротезирования.

Титан нашел широкое применение и в медицинской сфере. Среди преимуществ, которые позволили ему стать таким популярным, нужно отметить высокую прочность и устойчивость к коррозии. Кроме того, ни у одного из пациентов не было выявлено аллергии на титан.

В медицине применяются коммерчески чистый титан и сплав Ti6-4Eli. С его использованием изготавливаются хирургические инструменты, разнообразные внешние и внутренние протезы, вплоть до сердечных клапанов. Из титана производятся инвалидные коляски, костыли и прочие приспособления.

Ряд исследований и экспериментов подтверждает отличную биологическую совместимость материала и его сплавов с живой человеческой тканью. Мягкие и костные ткани срастаются с этими материалами без проблем. А низкий модуль упругости и высокий показатель удельной прочности делают титан очень хорошим материалом для эндопротезирования. Он заметно легче, чем жесть, сталь и сплавы на основе кобальта.

Таким образом, свойства титана позволяют активно использовать его в самых разнообразных сферах — от изготовления труб и кровли до медицинского протезирования и построения космических аппаратов.


Титан был первоначально назван «грегоритом» британским химиком преподобным Уильямом Грегором, который открыл его в 1791 году. Затем титан был независимо открыт немецким химиком М. Х. Клапротом в 1793 году. Он назвал его титаном в честь титанов из греческой мифологии - «воплощение естественной силы». Только в 1797 году Клапрот обнаружил, что его титан был элементом, ранее открытым Грегором.

Характеристики и свойства

Титан - это химический элемент с символом Ti и атомным номером 22. Это блестящий металл с серебристым цветом, низкой плотностью и высокой прочностью. Он устойчив к коррозии в морской воде и хлоре.

Элемент встречается в ряде месторождений полезных ископаемых, главным образом рутила и ильменита, которые широко распространены в земной коре и литосфере.

Титан используется для производства прочных лёгких сплавов. Двумя наиболее полезными свойствами металла являются коррозионная стойкость и отношение твёрдости к плотности, самое высокое из любого металлического элемента. В своём нелегированном состоянии этот металл столь же прочен, как некоторые стали, но менее плотный.

Физические свойства металла

Это прочный металл с низкой плотностью, довольно пластичный (особенно в бескислородной среде), блестящий и металлоидно-белый. Относительно высокая температура плавления более 1650 °C (или 3000 °F) делает его полезным в качестве тугоплавкого металла. Он парамагнитный и имеет довольно низкую электрическую и теплопроводность.

По шкале Мооса твёрдость титана равняется 6. По этому показателю он немного уступает закалённой стали и вольфраму.

Коммерчески чистые (99,2%) титаны имеют предельную прочность на разрыв около 434 МПа, что соответствует обычным низкосортным стальным сплавам, но при этом титан гораздо легче.

Химические свойства титана

Как алюминий и магний, титан и его сплавы сразу же окисляются при воздействии воздуха. Он медленно реагирует с водой и воздухом при температуре окружающей среды, потому что образует пассивное оксидное покрытие , которое защищает объёмный металл от дальнейшего окисления.

Атмосферная пассивация даёт титану отличную стойкость к коррозии почти эквивалентную платине. Титан способен противостоять атаке разбавленных серных и соляных кислот, растворов хлорида и большинства органических кислот.

Титан является одним из немногих элементов, которые сгорают в чистом азоте, реагируя при 800° C (1470° F) с образованием нитрида титана. Из-за своей высокой реакционной способности с кислородом, азотом и некоторыми другими газами титановые нити применяются в титановых сублимационных насосах в качестве поглотителей для этих газов. Такие насосы недороги и надёжно производят чрезвычайно низкое давление в системах сверхвысокого вакуума.

Обычными титаносодержащими минералами являются анатаз, брукит, ильменит, перовскит, рутил и титанит (сфен). Из этих минералов только рутил и ильменит имеют экономическое значение, но даже их трудно найти в высоких концентрациях.

Титан содержится в метеоритах и он был обнаружен на Солнце и звёздах M-типа с температурой поверхности 3200° C (5790° F).

Известные в настоящее время способы извлечения титана из различных руд являются трудоёмкими и дорогостоящими.

Производство и изготовление

В настоящее время разработаны и используются около 50 сортов титана и титановых сплавов. На сегодняшний день признаётся 31 класс титанового металла и сплавов, из которых классы 1−4 являются коммерчески чистыми (нелегированными). Они отличаются прочностью на разрыв в зависимости от содержания кислорода, причём класс 1 является наиболее пластичным (самая низкая прочность на разрыв с содержанием кислорода 0,18%), а класс 4 - наименее пластичный (максимальная прочность на разрыв с содержанием кислорода 0,40%).

Оставшиеся классы представляют собой сплавы, каждый из которых обладает конкретными свойствами:

  • пластичность;
  • прочность;
  • твёрдость;
  • электросопротивление;
  • удельная коррозионная стойкость и их комбинации.

В дополнение к данным спецификациям титановые сплавы также изготавливаются для соответствия требованиям аэрокосмической и военной техники (SAE-AMS, MIL-T), стандартам ISO и спецификациям по конкретным странам, а также требованиям конечных пользователей для аэрокосмических, военных, медицинских и промышленных применений.

Коммерчески чистый плоский продукт (лист, плита) может быть легко сформирован, но обработка должна учитывать тот факт, что металл имеет «память» и тенденцию к возврату назад. Особенно это касается некоторых высокопрочных сплавов.

Титан часто используется для изготовления сплавов:

  • с алюминием;
  • с ванадием;
  • с медью (для затвердевания);
  • с железом;
  • с марганцем;
  • с молибденом и другими металлами.

Области применения

Титановые сплавы в форме листа, плиты, стержней, проволоки, отливки находят применение на промышленных, аэрокосмических, рекреационных и развивающихся рынках. Порошковый титан используется в пиротехнике как источник ярких горящих частиц.

Поскольку сплавы титана имеют высокое отношение прочности на разрыв к плотности, высокую коррозионную стойкость, устойчивость к усталости, высокую стойкость против трещин и способность выдерживать умеренно высокие температуры, они используются в самолётах, при бронировании, в морских кораблях, космических кораблях и ракетах.

Для этих применений титан легирован алюминием, цирконием, никелем, ванадием и другими элементами для производства различных компонентов, включая критические конструктивные элементы, огневые стены, шасси, выхлопные трубы (вертолёты) и гидравлические системы. Фактически около двух третей произведённого титанового металла используется в авиационных двигателях и рамах.

Поскольку сплавы титана устойчивы к коррозии морской водой, они используются для изготовления гребных валов, оснастки теплообменников и т. д. Эти сплавы используются в корпусах и компонентах устройств наблюдения и мониторинга океана для науки и военных.

Удельные сплавы применяются в скважинных и нефтяных скважинах и никелевой гидрометаллургии для их высокой прочности. Целлюлозно-бумажная промышленность использует титан в технологическом оборудовании, подверженном воздействию агрессивных сред, таких как гипохлорит натрия или влажный хлорный газ (в отбеливании). Другие применения включают ультразвуковую сварку, волновую пайку.

Кроме того, эти сплавы используются в автомобилях, особенно в автомобильных и мотоциклетных гонках, где крайне важны низкий вес, высокая прочность и жёсткость.

Титан используется во многих спортивных товарах: теннисные ракетки, клюшки для гольфа, валы из лакросса; крикет, хоккей, лакросс и футбольные шлемы, а также велосипедные рамы и компоненты.

Благодаря своей долговечности титан стал более популярным для дизайнерских ювелирных изделий (в частности, титановых колец). Его инертность делает его хорошим выбором для людей с аллергией или тех, кто будет носить украшения в таких средах, как плавательные бассейны. Титан также легирован золотом для производства сплава, который может быть продан как 24-каратное золото, потому что 1% легированного Ti недостаточно, чтобы потребовать меньшую отметку. Полученный сплав представляет собой примерно твёрдость 14-каратного золота и более прочен, чем чистое 24-каратное золото.

Меры предосторожности

Титан является нетоксичным даже в больших дозах . В виде порошка или в виде металлической стружки, он представляет собой серьёзную опасность пожара и, при нагревании на воздухе, опасность взрыва.

Свойства и применение титановых сплавов

Ниже представлен обзор наиболее часто встречающихся титановых сплавов, которые делятся на классы, их свойства, преимущества и промышленные применения.

7 класс

Класс 7 механически и физически эквивалентен классу 2 чистого титана, за исключением добавления промежуточного элемента палладия, что делает его сплавом. Он обладает превосходной свариваемостью и эластичностью, наиболее коррозионной стойкостью из всех сплавов этого типа.

Класс 7 используется в химических процессах и компонентах производственного оборудования.

11 класс

Класс 11 очень похож на класс 1, за исключением добавления палладия для повышения коррозионной стойкости, что делает его сплавом.

Другие полезные свойства включают оптимальную пластичность, прочность, ударную вязкость и отличную свариваемость. Этот сплав можно использовать особенно в тех случаях, когда коррозия вызывает проблемы:

  • химическая обработка;
  • производство хлоратов;
  • опреснение;
  • морские применения.

Ti 6Al-4V, класс 5

Сплав Ti 6Al-4V, или титан 5 класса, наиболее часто используется. На его долю приходится 50% общего потребления титана во всём мире.

Удобство использования заключается в его многочисленных преимуществах. Ti 6Al-4V может подвергаться термообработке для повышения его прочности. Этот сплав обладает высокой прочностью при малой массе.

Это лучший сплав для использования в нескольких отраслях промышленности , таких как аэрокосмическая, медицинская, морская и химическая перерабатывающая промышленность. Его можно использовать при создании:

  • авиационных турбин;
  • компонентов двигателя;
  • конструктивных элементов самолёта;
  • аэрокосмических крепёжных изделий;
  • высокопроизводительных автоматических деталей;
  • спортивного оборудования.

Ti 6AL-4V ELI, класс 23

Класс 23 - хирургический титан. Сплав Ti 6AL-4V ELI, или класс 23, является версией более высокой чистоты Ti 6Al-4V. Он может быть изготовлен из рулонов, нитей, проводов или плоских проводов. Это лучший выбор для любой ситуации, когда требуется сочетание высокой прочности, малой массы, хорошей коррозионной стойкости и высокой вязкости. Он обладает превосходной устойчивостью к повреждениям.

Он может использоваться в биомедицинских применениях, таких как имплантируемые компоненты из-за его биосовместимости, хорошей усталостной прочности. Его также можно использовать в хирургических процедурах для изготовления таких конструкций:

  • ортопедические штифты и винты;
  • зажимы для лигатуры;
  • хирургические скобы;
  • пружины;
  • ортодонтические приборы;
  • криогенные сосуды;
  • устройства фиксации кости.

12 класс

Титан класса 12 обладает отличной высококачественной свариваемостью. Это высокопрочный сплав, который обеспечивает хорошую прочность при высоких температурах. Титан класса 12 обладает характеристиками, подобными нержавеющим сталям серии 300.

Его способность формироваться различными способами делает его полезным во многих приложениях. Высокая коррозионная стойкость этого сплава также делает его неоценимым для производственного оборудования. Класс 12 можно использовать в следующих отраслях:

  • теплообменники;
  • гидрометаллургические применения;
  • химическое производство с повышенной температурой;
  • морские и воздушные компоненты.

Ti 5Al-2,5Sn

Ti 5Al-2,5Sn - это сплав, который может обеспечить хорошую свариваемость с устойчивостью. Он также обладает высокой температурной стабильностью и высокой прочностью.

Ti 5Al-2,5Sn в основном используется в авиационной сфере, а также в криогенных установках.

Титан - элемент IV группы побочной подгруппы периодической системы, порядковый номер 22, атомный вес 47,9. Химический знак - Ti. Титан открыт в 1795году и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из распространенных элементов - содержание его в земной коре составляет примерно 0,6 %. Это металл серебристо-белой окраски. Его температура плавления равна 1665 °С. Коэффициент линейного расширения титана в интервале 20 – 100 °С составляет 8,3×10 -6 град -1 , а теплопроводность l = 15,4 Вт/(м×К). Он существует в двух полиморфных видоизменениях: до 882 °С в виде a-модификации, обладающей гексагональной плотно-упакованной кристаллической решеткой с параметрами а = 2,95 Å и с = 4,86 Å; а выше данной температуры устойчивой является b-трансформация с объемноцентрированной кубической решеткой (а = 3,31 Å).

Металл сочетает большую прочность с малой плотностью r = 4,5 г/см 3 и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при службе на термическую усталость. Металл обладает ползучестью как при повышенных, так и при комнатной температурах. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Металл высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает данную характеристику уже в области малых концентраций. Пластические свойства металла уменьшаются и при добавлении азота. При содержании азота более 0,2 % наступает хрупкое разрушение титана. Вместе с тем кислород и азот повышают временное сопротивление и выносливость металла. В этом отношении они являются полезными примесями.

Вредной примесью является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях, за счет образования гидридов. На прочностные характеристики металла водород не оказывает заметного влияния в широком интервале концентраций.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью металла является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе a-Ti (альфитированный), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Он имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.


Титан характеризуется значительной коррозионной стойкостью в атмосфере воздуха, естественной холодной, горячей пресной и морской воде, растворах щелочей, солей неорганических и органических кислот и соединений даже при кипячении. Он стоек по отношению к разбавленным серной, соляной (до 5 %), азотной всех концентраций (кроме дымящейся), уксусной и молочной кислотам, хлоридам и царской водке. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной защитной пленки, состав которой зависит от окружающей среды и условий ее образования. В большинстве случаев это диоксид - TiO 2 . При определенных условиях металл, взаимодействующий с соляной кислотой, может покрываться защитным слоем гидрида - TiH 2 . Титан устойчив против кавитационной коррозии и коррозии под напряжением.

Начало промышленного применения титана как конструкционного материала относится к сороковым годам прошлого столетия. В данном качестве титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Он сохраняет высокие прочностные характеристики при повышенных температурах и поэтому с успехом применяется для изготовления деталей, подвергающихся высокотемпературному нагреву.

В настоящее время титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.

В электротехнике и радиотехнике используют порошкообразный титан в качествепоглотителя газов - при нагревании до 500 °С он энергично абсорбирует газы и тем самым обеспечивает в замкнутом объеме высокий вакуум. В связи с этим его применяют для изготовления деталей электронных ламп.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него делают детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно-активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для производства различных деталей гальванических ванн. Его широко употребляют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при больших температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах он корродирует довольно быстро вследствие разрушения защитной окисной пленки.

Сплавы титана с различными элементами являются более перспективными материалами, чем технически-чистый металл.

Основными легирующими компонентами промышленных титановых сплавов являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных элементов, а также с кремнием, бором, водородом, азотом и кислородом.

Наличие полиморфных превращений титана, хорошая растворимость многих элементов в нем, образование химических соединений, обладающих переменной растворимостью, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.

Они обладают тремя основными преимуществами по сравнению с другими сплавами: малым удельным весом, высокими химическими свойствами и отличной коррозионной стойкостью. Сочетание легкости с большой прочностью делают их особенно перспективными материалами как заменители специальных сталей для авиационной промышленности, а значительная коррозионная стойкость - для судостроения и химической промышленности.

Во многих случаях применение титановых сплавов оказывается экономически выгодным, несмотря на высокую стоимость титана. Например, применение литых титановых насосов с высочайшей коррозионной стойкостью на одном из предприятий России позволило снизить эксплуатационные расходы на один насос в 200 раз. Таких примеров можно привести немало.

В зависимости от характера влияния, оказываемого легирующими элементами на полиморфные превращения титана при сплавлении, все сплавы делятся на три группы:

1) с a-фазой (алюминий);

2) с b-фазой (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий и тантал);

3) с a + b-фазами (олово, цирконий германий).

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности они превосходят многие нержавеющие и теплостойкие стали в интервале 400 - 500 °С. Эти сплавы обладают более высокой жаропрочностью и наивысшим сопротивлением ползучести, чем многие другие на основе титана. Они также имеют повышенный модуль нормальнойупругости. Сплавы не подвергаются коррозии и слабо окисляются при высоких температурах. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5 %. Добавка олова в сплавы повышает их прочностные характеристики. При концентрации в них до 5 % Sn заметного снижения пластических свойств не наблюдается. Кроме того, введение олова в сплавы повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4 - 5 % Аl и 2 – 3 % Sn, сохраняют значительную механическую прочность до 500 °С.

Цирконий не оказывает большого влияния на механические свойства сплавов, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

Сплавы данного типа достаточно пластичны: прокатываются, штампуются и куются в горячем состоянии, свариваются аргоно-дуговой и контактной сваркой, удовлетворительно обрабатываются резанием, обладают хорошей коррозионной стойкостью в концентрированной азотной кислоте, в атмосфере, растворах поваренной соли при цикличных нагрузках и морской воде. Они предназначаются для изготовления деталей, работающих при температурах от 350 до 500 °С при длительных нагрузках и до 900 °С при кратковременных нагрузках. Сплавы поставляются в виде листов, прутков, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки.

При комнатной температуре они сохраняют кристаллическую решетку, присущую модификации a-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии.

К титановым сплавам с термодинамически устойчивой b-фазой относятся системы, содержащие в своем составе алюминий (3,0 - 4,0 %), молибден (7,0 - 8,0 %) и хром (10,0 - 15,0 %). Однако при этом теряется одно из основных преимуществ титановых сплавов - относительно малая плотность. Это является основной причиной того, что данные сплавы не получили широкого распространения. После закалки с 760 - 780 °С и старения при 450 - 480 °С они имеют временное сопротивление 130 – 150 кГ/мм 2 , это эквивалентно стали с s в = 255 кГ/мм 2 . Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Они поставляются в виде листов, прутков и поковок.

Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси a- и b-фaз. Непременным компонентом в них является алюминий. Содержание алюминия не только расширяет область температур, при которых сохраняется стабильность a-фазы, но и повышает термическую устойчивость b-составляющей. Кроме того, этот металл уменьшает плотность сплава и тем самым компенсирует увеличение данного параметра, связанное с введением тяжелых легирующих элементов. Они обладают хорошей прочностью и пластичностью. Из них изготовляют листы, прутки, поковки и штамповки.Детали из таких сплавов можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Они удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде, обладают хорошей термической стабильностью.

Иногда, кроме алюминия и молибдена, в сплавы добавляется небольшое количество кремния. Это способствует тому, что сплавы в горячем состоянии хорошо поддаются прокатке, штамповке и ковке, а также увеличивается сопротивление ползучести.

Широкое применение находит карбид титана TiC и сплавы на его основе. Карбид титана обладает большой твердостью и очень высокой темпера­турой плавления, что и определяет основные области его применения. Его давно применяют как компонент твердых сплавов для режущих инструментов и штампов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5К10, Т5К7, Т14К8, Т15К6, ТЗ0К4 (первая цифра соответствует содержанию карбида титана, а вторая - концентрации цементирующего металлического кобальта в %). Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде. Его температура плавления выше 3000 °С. Он обладает большой электропроводностью, а при низких температурах - сверхпроводимостью. Ползучесть данного соединения мала вплоть до 1800 °С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах - соляной, серной, фосфорной, щавелевой, на холоде - в хлорной кислоте, а также в их смесях.

Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Это позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.

Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000 – 1100 °С. Они обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов мала, и это является основным препятствием для широкого их распространения.

Карбид титана и сплавы на его основе с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава его с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100 - 1300 °С и серебро при 980 °С в вакууме, алюминий при 700 °С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или тантала с добавкой до 15 % Со при 900 – 1000 °С в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.

Вечный, загадочный, космический, - все эти и многие другие эпитеты присваиваются в различных источниках титану. История открытия этого металла не была тривиальной: одновременно над выделением элемента в чистом виде трудились несколько ученых. Процесс изучения физических, химических свойств и определение областей его применения на сегодняшний день. Титан - металл будущего, место его в жизни человека еще окончательно не определено, что дает современным исследователям огромный простор для творчества и научных изысканий.

Характеристика

Химический элемент обозначается в периодической таблице Д. И. Менделеева символом Ti. Располагается в побочной подгруппе IV группы четвертого периода и имеет порядковый номер 22. титан - металл бело-серебристого цвета, легкий и прочный. Электронная конфигурация атома имеет следующую структуру: +22)2)8)10)2, 1S 2 2S 2 2P 6 3S 2 3P 6 3d 2 4S 2 . Соответственно, титан имеет несколько возможных степеней окисления: 2, 3, 4, в наиболее устойчивых соединениях он четырехвалентен.

Титан - сплав или металл?

Этот вопрос интересует многих. В 1910 году американский химик Хантер получил впервые чистый титан. Металл содержал всего 1 % примесей, но при этом его количество оказалось ничтожно мало и не давало возможности дальнейшего исследования его свойств. Пластичность полученного вещества достигалась толькопод воздействием высоких температур, при нормальных условиях (комнатной температуре) образец был слишком хрупок. Фактически этот элемент не заинтересовал ученых, так как перспективы его использования казались слишком неопределенными. Сложность получения и исследования еще больше снизили потенциал его применения. Только в 1925 году ученые-химики из Нидерландов И. де Бур и А. Ван-Аркел получили металл титан, свойства которого привлекли внимание инженеров и конструкторов всего мира. История исследования этого элемента начинается с 1790 года, именно в это время параллельно, независимо друг от друга, двое ученых открывают титан как химический элемент. Каждый из них получает соединение (оксид) вещества, не сумев выделить металл в чистом виде. Первооткрывателем титана считается английский минеролог монах Уильям Грегор. На территории своего прихода, расположенного в юго-западной части Англии, молодой ученый начал изучение черного песка долины Менакэна. Результатом стало выделение блестящих крупиц, которые являлись соединением титана. В это же время в Германии химик Мартин Генрих Клапрот выделил новое вещество из минерала рутиле. В 1797 году он же доказал, что открытые параллельно элементы являются аналогичными. Двуокись титана более века являлась загадкой для многих химиков, получить чистый металл оказалось не по силам даже Берцелиусу. Новейшие технологии XX века значительно ускорили процесс изучения упомянутого элемента и определили начальные направления его использования. При этом сфера применения расширяется постоянно. Ограничить её рамки может только сложность процесса получения такого вещества, как чистый титан. Цена сплавов и металла достаточно высока, поэтому на сегодняшний день он не может вытеснить традиционное железо и алюминий.

Происхождение названия

Менакин - первое название титана, которое применялось до 1795 года. Именно так, по территориальной принадлежности, назвал новый элемент У. Грегор. Мартин Клапрот присваивает элементу в 1797 году наименование «титан». В это время его французские коллеги во главе с достаточно авторитетным химиком А. Л. Лавуазье предлагают именовать вновь открытые вещества в соответствии с их основными свойствами. Немецкий ученый не был согласен с таким подходом, он вполне обоснованно считал, что на стадии открытия достаточно сложно определить все характеристики, свойственные веществу, и отразить их в названии. Однако следует признать, что интуитивно выбранный Клапротом термин в полной мере соответствует металлу - это неоднократно подчеркивали современные ученые. Существуют две основные теории возникновения названия титан. Металл мог быть обозначен так в честь эльфийской царицы Титании (персонаж германской мифологии). Такое название символизирует одновременно легкость и прочность вещества. Большинство ученых склоняются к версии использования древнегреческой мифологии, в которой титанами называли могучих сыновей богини земли Геи. В пользу этой версии говорит и название открытого ранее элемента - урана.

Нахождение в природе

Из металлов, которые в техническом отношении представляют ценность для человека, титан занимает четвертое место по степени распространенности в земной коре. Большим процентным содержанием в природе характеризуются только железо, магний и алюминий. Наибольшее содержание титана отмечено в базальтовой оболочке, чуть меньше его в гранитном слое. В морской воде содержание данного вещества невысокое - приблизительно 0,001 мг/л. Химический элемент титан достаточно активен, поэтому в чистом виде его встретить невозможно. Чаще всего он присутствует в соединениях с кислородом, при этом имеет валентность, равную четырем. Количество титаносодержащих минералов варьируется от 63 до 75 (в различных источниках), при этом на современном этапе исследований ученые продолжают открывать новые формы его соединений. Для практического использования наибольшее значение имеют следующие минералы:

  1. Ильменит (FeTiO 3).
  2. Рутил (TiO 2).
  3. Титанит (CaTiSiO 5).
  4. Перовскит (CaTiO 3).
  5. Титаномагнетит (FeTiO 3 +Fe 3 O 4) и т. д.

Все существующие титаносодержащие руды делят на россыпные и основные. Данный элемент является слабым мигрантом, он может путешествовать только в виде обломов камней или перемещения илистых придонных пород. В биосфере наибольшее количество титана содержится в водорослях. У представителей наземной фауны элемент накапливается в роговых тканях, волосе. Для человеческого организма характерно присутствие титана в селезенке, надпочечниках, плаценте, щитовидной железе.

Физические свойства

Титан - цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. При температуре 0 0 С его плотность составляет 4,517 г/см 3 . Вещество имеет низкую удельную массу, что характерно для щелочных металлов (кадмий, натрий, литий, цезий). По плотности титан занимает промежуточную позицию между железом и алюминием, при этом его эксплуатационные характеристики выше, чем у обоих элементов. Основными свойствами металлов, которые учитываются при определении сферы их применения, являются и твердость. Титан прочнее алюминия в 12 раз, железа и меди - в 4 раза, при этом он значительно легче. Пластичность и предел его текучести позволяют производить обработку при низких и высоких температурных значениях, как и в случае с остальными металлами, т. е. методами клепки, ковки, сварки, проката. Отличительная характеристика титана - его низкая тепло- и электропроводность, при этом данные свойства сохраняются при повышенных температурах, вплоть до 500 0 С. В магнитном поле титан является парамагнитным элементом, он не притягивается, как железо, и не выталкивается, как медь. Очень высокие антикоррозийные показатели в агрессивных средах и при механических воздействиях уникальны. Более 10 лет нахождения в морской воде не изменили внешнего вида и состава пластины из титана. Железо в этом случае было бы уничтожено коррозией полностью.

Термодинамические свойства титана

  1. Плотность (при нормальных условиях) составляет 4,54 г/см 3 .
  2. Атомный номер - 22.
  3. Группа металлов - тугоплавкий, легкий.
  4. Атомная масса титана - 47,0.
  5. Температура кипения (0 С) - 3260.
  6. Молярный объем см 3 /моль - 10,6.
  7. Температура плавления титана (0 С) - 1668.
  8. Удельная теплота испарения (кДж/моль) - 422,6.
  9. Электросопротивление (при 20 0 С) Ом*см*10 -6 - 45.

Химические свойства

Повышенная коррозийная устойчивость элемента объясняется образованием на поверхности небольшой оксидной пленки. Она предотвращает (при нормальных условиях) с газами (кислород, водород), находящимися в окружающей атмосфере такого элемента, как металл титан. Свойства его изменяются под воздействием температуры. При ее повышении до 600 0 С происходит реакция взаимодействия с кислородом, в результате образуется оксид титана (TiO 2). В случае поглощения атмосферных газов образуются хрупкие соединения, которые не имеют никакого практического применения, именно поэтому сварка и плавка титана производятся в условиях вакуума. Обратимой реакцией является процесс растворения водорода в металле, он более активно происходит при повышении температуры (от 400 0 С и выше). Титан, особенно его мелкие частицы (тонкая пластина или проволока), сгорает в атмосфере азота. Химическая реакция взаимодействия возможна только при температуре 700 0 С, в результате образуется нитрид TiN. Со многими металлами формирует высокотвердые сплавы, часто является легирующим элементом. В реакцию с галогенами (хром, бром, йод) вступает только при наличии катализатора (высокой температуры) и при условии взаимодействия с сухим веществом. При этом образуются очень твердые тугоплавкие сплавы. С растворами большинства щелочей и кислот титан химически не активен, исключением является концентрированная серная (при длительном кипячении), плавиковая, горячие органические (муравьиная, щавелевая).

Месторождения

Наиболее распространены в природе ильменитовые руды - их запасы оцениваются в 800 млн тонн. Залежи рутиловых месторождений гораздо скромнее, но общий объем - при сохранении роста добычи - должен обеспечить человечество на ближайшие 120 лет таким металлом, как титан. Цена готового продукта будет зависеть от спроса и повышения уровня технологичности производства, но в среднем варьируется в диапазоне от 1200 до 1800 руб./кг. В условиях постоянного технического совершенствования значительно понижается себестоимость всех производственных процессов при их своевременной модернизации. Наибольшими запасами обладают Китай и Россия, также минерально-сырьевую базу имеют Япония, ЮАР, Австралия, Казахстан, Индия, Южная Корея, Украина, Цейлон. Месторождения отличаются объемами добычи и процентным содержанием титана в руде, геологические изыскания продолжаются постоянно, что дает возможность предполагать снижение рыночной стоимости металла и его более широкое применение. Россия на сегодняшний день является наиболее крупным производителем титана.

Получение

Для производства титана чаще всего используется его диоксид, содержащий минимальное количество примесей. Его получают путем обогащения ильменитовых концентратов или рутиловых руд. В электродуговой печи происходит термическая обработка руды, которая сопровождается отделением железа и образованием шлака, содержащего оксид титана. Сернокислый или хлоридный метод применяется для обработки свободной от железа фракции. Оксид титана является порошком серого цвета (см. фото). Металл титан получается при его поэтапной обработке.

Первой фазой является процесс спекания шлака с коксом и воздействия парами хлора. Полученный TiCl 4 восстанавливают магнием или натрием при воздействии температуры 850 0 С. Титановая губка (пористая сплавленная масса), полученная в результате химической реакции, очищается или переплавляется в слитки. В зависимости от дальнейшего направления использования, формируется сплав или металл в чистом виде (примеси удаляются путем нагрева до 1000 0 С). Для производства вещества с долей примесей 0,01 % используется йодидный метод. Он основан на процессе выпаривания из титановой губки, предварительно обработанной галогеном, его паров.

Сферы применения

Температура плавления титана является достаточно высокой, что при легкости металла является неоценимым преимуществом использования его в качестве конструкционного материала. Поэтому наибольшее применение он находит в судостроении, авиационной промышленности, изготовлении ракет, химических производствах. Титан достаточно часто используют в качестве легирующей добавки в различных сплавах, которые обладают повышенными характеристиками твердости и жаропрочности. Высокие антикоррозийные свойства и способность выдерживать большинство агрессивных сред делают этот металл незаменимым для химической промышленности. Из титана (его сплавов) изготавливают трубопроводы, емкости, запорную арматуру, фильтры, используемые при перегонке и транспортировке кислот и других химически активных веществ. Он востребован при создании приборов, работающих в условиях повышенных температурных показателях. Соединения титана используются для изготовления прочного режущего инструмента, красок, пластика и бумаги, хирургических инструментов, имплантатов, ювелирных изделий, отделочных материалов, применяется в пищевой промышленности. Все направления сложно описать. Современная медицина из-за полной биологической безопасности часто использует металл титан. Цена - это единственный фактор, который пока влияет на широту применения данного элемента. Справедливым является утверждение, что титан - материал будущего, изучая который, человечество перейдет на новый этап развития.