1 действия с десятичными дробями. Математика: действия с дробями

Организация: МБОУ Бестужевская СОШ

Населенный пункт: с. Бестужево, Устьянский р-н, Архангельская область

Дидактический материал по теме:

«Десятичные дроби. Действия с десятичными дробями. Проценты»

«Дидактический материал - особый тип наглядного учебного пособия (преимущественно карты, таблицы, наборы карточек с текстом, цифрами или рисунками и т.д.), раздаваемые учащимся для самостоятельной работы в классе или дома. Дидактическим материалом называются также сборники задач и упражнений» .

  • Данный дидактический материал разработан по теме: «Десятичные дроби. Действия с десятичными дробями. Проценты». рассчитан на учащихся 5 класса общеобразовательных школ и предназначен для формирования и развития вычислительной культуры учащихся по данной теме.

Цель данного дидактического материала – овладение учащимися вычислительных навыков действий с десятичными дробями и процентами; развитие познавательной активности и повышение учебной мотивации у пятиклассников; формирование у учащихся культуры учебной деятельности и повышение интереса к математике.

Задачи :

1) Сформировать и развить вычислительные навыки действий с десятичными дробями и процентами у пятиклассников при решении заданий данного дидактического материала;

2) Повысить учебную мотивацию и интерес к изучению математики у учащихся через решение нестандартных заданий дидактического материала;

3) Развивать познавательную активность и культуру учебной деятельности учащихся при различных формах работы с данным дидактическим материалом.

Данный дидактический материал представлен в виде карточек с различными нестандартными заданиями. Первый вид заданий – числовые кроссворды. В этих кроссвордах ответом может быть целое число или конечная десятичная дробь. Такие кроссворды – альтернатива примерам из учебных пособий. При разгадывании кроссвордов, нужно выполнить действие с десятичными дробями, записать ответ в кроссворд, при этом надо учитывать, что каждый знак записывается в отдельную клетку. В конце каждой карточки с кроссвордом дана инструкция по заполнению ответов. Решая такие числовые кроссворды, учащиеся могут контролировать правильность своих решений (при индивидуальной работе с кроссвордом) или контролировать друг друга (при работе в парах или малых группах). Кроссворды в дидактическом материале представлены по следующим темам: «Запись десятичных дробей», «Сложение и вычитание десятичных дробей», «Умножение десятичных дробей на натуральное число», «Деление десятичных дробей на натуральное число», «Умножение десятичных дробей», «Деление числа на десятичную дробь».

В дидактическом материале также содержатся задания, ответом на которые может быть слово, фраза, поговорка или имя ученого. В таких заданиях учащийся решает пример, получает ответ, которому соответствует определенная буква. Решив все примеры в задании можно получить термин, значение которого дается ниже; пословицу или имя ученого, внесшего вклад в развитие математики. Решая такие задания, учащиеся узнают интересные факты из истории математики, о различных древних приспособлениях счета, об истории появления процентов. В процессе решении заданий учащиеся могут сами контролировать правильность своего решения или контроль осуществляет учитель. В конце карточки с заданиями дана инструкция по заполнению ответов. Эти задания носят познавательный характер и направлены на расширение кругозора учащихся. В дидактическом материале содержатся задания по темам: «Сложение и вычитание десятичных дробей», «Умножение десятичных дробей на натуральное число», «Умножение и деление десятичных дробей на натуральное число», «Умножение десятичных дробей», «Умножение и деление десятичных дробей», «Все действия с десятичными дробями», «Среднее арифметическое», «Нахождение числа по его процентам».

В данном дидактическом материале содержится задания, в которых нужно вставить пропущенные числа. Это цепочка вычислений, в которой дано одно число: первое, последнее или число посередине цепочки и нужно расставить остальные числа, выполняя действия в одну или другую сторону. Цепочки вычислений представлены в разных уровнях сложности. Также сюда относятся задания, в которых нужно вставить пропущенные числа по кругу, выполняя различные действия с числом в центре. Такие задания требуют контроля и проверки учителем и рассчитаны для устного счета или небольшой проверочной работы. Эти задания представлены по темам: «Сложение и вычитание десятичных дробей», «Умножение и деление десятичных дробей на натуральное число», «Действия с десятичными дробями», «Проценты».

Следующий вид заданий, которые содержатся в дидактическом материале – задания на определение истинности или ложности высказывания, которые тоже рассчитаны для устного решения или математического диктанта. В таких заданиях дано высказывание или решен пример и нужно определить верно это или неверно, в кружок рядом с высказыванием поставить «И» или «Л». При решении таких заданий учащимися должен быть контроль со стороны учителя. Задания представлены по следующим темам: «Чтение и запись десятичных дробей», «Умножение числа на 0,1; 0,01; 0,001; …….».

Последний вид заданий данного дидактического материала - это задания на нахождение ошибки в примерах или в решении уравнений. В таких заданиях нужно найти и исправить предложенные ошибки, к каждой карточке с заданием для самоконтроля указано количество допущенных ошибок. Проверка выполнения задания осуществляется учителем. Задания представлены по темам: «Деление десятичных дробей на натуральное число», «Деление числа на 0,1; 0,01; 0,001; …..».

При использовании нестандартных заданий данного дидактического материала у учащихся формируется вычислительная культура, развиваются и отрабатываются вычислительные навыки по теме: «Десятичные дроби. Действия с десятичными дробями. Проценты». Задания дидактического материала позволяют привить учащимся интерес к математике, повысить их познавательную активность и мотивацию к учению. С помощью дидактического материала у пятиклассников формируются умения самостоятельно осмысливать и усваивать материал по данной теме, развивается смекалка. Данный дидактический материал можно использоваться на уроках для индивидуальной работы учащихся, работы в парах или малых группах. Для индивидуальной работы задания выдаются более сильным учащимся, более слабые работают в парах или группах по 3-4 человека. Оцениваются эти задания разными способами: самооценка учащимися, взаимооценка при работе в паре или группе, оценка работы учителем. Задания дидактического материала можно использовать для домашней работы и самоподготовки учащихся. Дидактический материал можно применять на разных этапах урока. На этапе актуализации знаний применяются цепочки вычислений и задания на определении истинности и ложности высказываний, так же эти задания можно использовать при проведении математических диктантов. Числовые кроссворды и задания на получение слова, фразы или имени ученого можно использовать на этапах закрепления и применения знаний. Данный дидактический материал можно использовать для контроля и проверки знаний учащихся по теме: «Десятичные дроби. Действия с десятичными дробями. Проценты». При решении такого рода заданий у учащихся развивается культура учебной деятельности: если это индивидуальная работа, то ученик самостоятельно определяет шаги по решению и может себя проконтролировать и оценить, может проявить смекалку; если это работа в паре или в малой группе, то ученики распределяют задания между собой, контролируют друг друга, проводят взаимооценку. Дидактический материал направлен на самоконтроль со стороны учащихся, взаимоконтроль и тренировку в процессе усвоения учебного материала. При работе с дидактическим материалом учащийся решает конкретную дидактическую задачу, используя свои знания и навыки, при этом развивает свою интеллектуальную, мотивационную, волевую и эмоциональную сферы. Из опыта использования данного дидактического материала могу сказать, что ученики на «ура» принимают эти задания, особенно любят отгадывать числовые кроссворды.

При использовании данного дидактического материала в процессе обучения у учащихся формируются все группы УУД (универсальные учебные действия). УУД – совокупность способов действия учащегося (а также связанных с ними навыков учебной работы), обеспечивающих его способность к самостоятельному усвоению новых знаний и умений, включая организацию этого процесса . Формируются и развиваются:

Личностные УУД – использование полученных знаний, мотивация к учению, оценивание собственной учебной деятельности.

Регулятивные УУД - организация и планирование своей учебной деятельности, самостоятельный анализ условия достижения цели, прогнозирование и предвосхищение результата, контроль и коррекция своей деятельности.

Познавательные УУД - структурирование знаний, выбор наиболее эффективных способов решения задач в зависимости от конкретных условий, владение анализом и синтезом, поиск и выделение необходимой информации.

Коммуникативные УУД - умение формулировать мысли, планирование учебного сотрудничества с учителем и сверстниками, управление поведением партнера - контроль, коррекция, оценка действий партнера, умение отстаивать свою точку зрения.

Данный дидактический материал разработан с опорой на учебники математики для 5 класса: «Математика 5» авторского коллектива Виленкин Н. Я., Жохов В. И., Чесноков А. С., Шварцбурд С. И., а также «Математика 5» коллектива авторов Мерзляк А. Г., Полонский В. Б., Якир М. С. Задания дидактического материала могут быть использованы учителями в процессе преподавания математики в 5 классах по учебникам других авторов. Также дидактический материал будет служить хорошим помощником при самоподготовке учащихся. В конце дидактического материала предложены ответы к заданиям.

Список литературы:

1. Виленкин Н. Я., Жохов В. И., Чесноков А. С., Шварцбурд С. И. Математика 5класс, 6 класс, учебник Москва Мнемозина, 2013 год.

2. Глейзер Г. И. История математики в школе. М.: Просвещение, 1981 год.

3. Мерзляк А. Г., Полонский В. Б., Якир М. С. Математика 5, 6 класс. Москва Вентана-Граф, 2013 год.

4. Мерзляк А. Г., Полонский В. Б., Рабинович Е. М., Якир М. С.. Дидактические материалы. Математика 5 класс, 6 класс. Москва Вентана-Граф, 2015 год.

5. Рапацевич Е. С. Новейший психолого-педагогический словарь. Современная школа, 2010 год.

6. Фундаментальное ядро содержания общего образования под редакцией Козлова В. В., Кондакова А. М. М.: Просвещение 2011 год.

7. Чесноков А. С., Нешков К. И. Дидактические материалы по математике 5класс, 6 класс. Москва Классик Стиль, 2010.

8. Википедия. Свободная энциклопедия. https://ru.wikipedia.org/wiki/


Глава 2 ДРОБНЫЕ ЧИСЛА И Действия С НИМИ

§ 45. Задачи и примеры на все действия с натуральными числами и десятичными дробями

Начальный уровень

1620. Найди (устно):

1) 1,8 + 3,1; 2) 0,05 + 0,18; 3) 4,2 - 1,2;

4) 100 ∙ 0,15; 5) 57 ∙ 0,1; 6) 0,73: 0,1.

1621. Найди (устно):

1) 7,8 + 4,9; 2) 3,7 + 2,51; 3) 1 - 0,6;

4) 2 - 0,17; 5) 0,001 ∙ 29; 6) 4,2: 0,7.

1622. Обчисли (устно):

1) 0,57 + 1,43; 2) 4,27 - 2,07; 3) 4,1 - 2,01;

4) 8 ∙ 1,5; 5) 60: 0,2; 6) 739: 100.

1623. Обчисли (устно):

1) 8,32 ∙ 10; 2) 117,3 ∙ 100; 3) 1,85 ∙ 1000;

4) 3,71 ∙ 0,1; 5) 4,92 ∙ 0,01; 6) 125,3 ∙ 0,001.

1624. Обчисли (устно):

1) 32,7: 10; 2) 45,13: 100; 3) 2792: 1000;

4) 8,3: 0,1; 5) 37,3: 0,01; 6) 13,24: 0,001.

1625. Обчисли:

1) 5,18 + 25,37; 2) 0,805 + 7,105;

3) 5,97 + 0,032; 4) 8,91 - 1,328;

5) 71,5 - 16,07; 6) 42 - 7,18.

1626. Обчисли:

1) 4,27 + 37,42; 2) 0,913 + 8,39;

3) 4,13 + 0,9027; 4) 4,17 - 0,127;

5) 42,7 - 17,08; 6) 78 - 14,53.

1627. Обчисли:

1) 42 ∙ 0,13; 2) 3,6 ∙ 2,5; 3) 7,05 ∙ 800;

4) 15: 4; 5) 72: 2,25; 6) 15,3: 17.

1628. Обчисли:

1) 38 ∙ 0,25; 2) 4,8 ∙ 3,5; 3) 4,07 ∙ 900;

4) 18,3: 2; 5) 53,55: 4,25; 6) 406,6: 19.

1629. Запиши в виде десятичной дроби:

1630. Запиши в виде обыкновенной дроби или смешанного числа:

1) 2,3; 2) 4,07; 3) 0,23; 4) 10,073.

1631. Сравни:

1) 4,897 и 4,879; 2) 7,520 и 7,52;

3) 42,57 и 42,572; 4) 9,759 и 9,758.

1632. Сравни:

1) 7,896 и 7,869; 2) 8,01 и 8,1;

3) 47,53 и 47,530; 4) 4,571 и 4,578.

Средний уровень

1633. Обчисли 2,5 x + 0,37, если:

1) x = 1,6; 2) x = 3,4.

1634. Найди среднее арифметическое чисел:

1) 0,573; 1,96; 35,24;

2) 4,82; 89,59; 0,462; 9,368.

1635. Найди среднее арифметическое чисел 20,76; 80,43; 90,24.

1636. За 2,5 часа поезд проехал 195 км. Сколько километров проедет поезд за 3,6 ч, если будет двигаться с той же скоростью?

1637. Автомобиль в течение t часов ехал со скоростью 85 км/час. Составь выражение для нахождения пути, пройденного автомобилем, и обчисли его, если t равен 0,5; 0,8; 1,4; 3.

1638. Обчисли значение выражения 27,3 - а: b , если:

1) а = 33,5; b = 2,5; 2) а = 32,16; b = 13,4.

1639. Реши уравнения:

1) 12,5 + х = 37,4; 2) в + 13,72 = 18,1;

3) в - 137,8 = 27,41; 4) 17 - х = 12,42.

1640. Реши уравнения:

1) 13,7 + a = 18,4; 2) x + 13,42 = 18,9;

3) b - 142,3 = 15,73; 4) 14 - y = 12,142.

1641. Сравни величины:

1) 0,4 м и 4 дм; 2) 0,2 дм и 20 см;

3) 0,07 м и 7 см; 4) 0,03 км и 300 м

1642. Сравни величины:

1) 0,2 т и 2 ц; 2) 0,3 ц и 31 кг;

3) 0,8 т и 785 кг; 4) 0,08 кг и 80 г.

1643. Скорость теплохода в стоячей воде равна 25,4 км/ч, а скорость течения реки - 1,8 км/час. Сколько километров проходит теплоход:

1) за 1,5 ч по течению реки;

2) за 2,4 ч против течения реки?

1644. Катер двигался сначала 1,6 ч по озеру со скоростью 25,5 км/ч, а затем 0,8 ч по реке против течения. Скорость течения равна 1,7 км/ч. Какое расстояние преодолел катер?

1645. Найди значение выражения:

1) 15 ∙ (2,7 + 4,2);

2) (5,7 - 2,3) : 4;

3) (5,47 - 4,25) ∙ 10;

4) (4,47 + 2,7) : 10;

5) (13,42 - 4,15) ∙ (12,3 - 0,3);

6) (2,17 + 4,45) : (12,6 - 12,5).

1646. Найди значение выражения:

1) (2,43 + 4,15) ∙ 1,7;

2) (12,49 - 3,57) : 0,4;

3) (4,17 - 3,8) ∙ (10,1 - 8,1);

4) (15,7 + 14,9) : (2,91 - 1,21).

1647. Реши уравнения:

1) 12,5 х = 45; 2) в ∙ 4,8 = 60,6;

3) х: 4,7 = 12,3; 4) 12,7: в = 0,01.

1648. Розв яжи уравнения:

1) 3,7 y = 7,77; 2) х ∙ 3,48 = 8,7;

3) в: 5,4 = 13,5; 4) 52,54: х = 3,7.

1649. Составь выражение: от суммы чисел а и 42,3 отнять разницу чисел 15,7 и b . Обчисли значение выражения, если а = 3,7; b = 2,3.

1650. Из 360 учеников школы 40 % принимали участие в кроссе. Сколько учащихся участвовало в кроссе?

1651. Найди значение выражения:

1) (120,21 - 37,59) : 34 + 5,43 ∙ 19;

2) (8,57 + 9,585: 4,5) ∙ 3,8 - 42,7: 4.

1652. Найди значение выражения:

1) (5,02 - 3,89) ∙ 29 + 0,27: 18;

2) (32,526: 3,9 + 2,26) ∙ 5,4 - 47,2 ∙ 0,5.

1653. На сколько сумма чисел 19,4 и 4,72 больше разности этих же чисел?

1654. Найди сумму 25,3 дм + 13,7 см + 15 мм в сантиметрах.

1655. 32 ученики собрали 152 кг клубники и 33,6 кг малины. Сколько всего килограммов ягод собрал каждый ученик, если они собрали ягод каждого вида поровну?

1656. С поля площадью 420 га планировалось собрать по 35 центнеров зерна с каждого гектара, но собрали 1785 т зерна. На сколько центнеров урожай с 1 га выше, чем было запланировано?

1657. Найди площадь поверхности куба с ребром 1,5 см.

1658. Найди площадь и периметр квадрата со стороной 4,7 дм.

1659. Запиши в порядке убывания дроби: 0,27; 0,372; 0,423; 0,279; 0,51; 0,431; 0,307.

1660. Запиши в порядке возрастания дроби: 4,23; 4,32; 4,222; 43,2; 4,232; 4,323.

1661. Веревку длиной 15,3 м разрезали на три части. Одна из них составляет веревки, вторая

длиннее первой на 1,8 м. Найди длину каждой части.

1662. Яхта «Беда» за 3 дня регаты преодолела 234,9 км. За первый день яхта преодолела этого расстояния, а за второй - на 8,3 км меньше, чем за первый. Сколько километров яхта «Беда» преодолевала каждый день?

1663. Автомобиль проехал 471 км. Первые 205 км он ехал со скоростью 82 км/ч, а оставшуюся часть - со скоростью 76 км/час. За какое время автомобиль преодолел весь путь?

1664. Периметр равнобедренного треугольника равен 15,4 см. Найди его основание, если боковая сторона треугольника равна 5,3 см.

1665. Найди периметр равнобедренного треугольника, основа которого равна 4,2 дм, а боковая сторона в 1,5 раза больше за основу.

1666. Обчисли:

1) (88,57 + 66,87) : 29 - 0,27 ∙ 18;

2) 20,8: (12 - 11,36) - 8: 12,5 + 4,7 ∙ 5,2.

1667. Обчисли:

1) (1,37 + 4,86) ∙ 17 - 556,89: 19;

2) (3,81 + 59,427: 9,3) ∙ 7,6 - 10,2 ∙ 4,7.

1668. На сколько сумма чисел 8,1 и 7,2 больше их долю?

1669. На сколько разность чисел 3,7 и 2,5 меньше их произведения?

1670. Найди значение выражения а ∙ 2,5 - b , если а = 3,6; b = 1,117.

1671. Между какими соседними натуральными числами размещено дробь:

1672. Округли до:

1) единиц: 25,17; 37,89;

2) десятых: 37,893; 42,012;

3) сотых: 108,112; 213,995.

1673. Округли до:

1) единиц: 25,372; 37,51;

2) десятых: 13,185; 14,002;

3) сотых: 15,894; 17,377.

1674. Начерти координатный луч, взяв за единичный отрезок 10 клеточек. Отметить на нем точки А(0,7), B (1,3), С(1), D (0,2), D (1,9).

1675. Начерти координатный луч, взяв за единичный отрезок 10 клеточек. Обозначь на нем точки М(0,6), N (1,4), K (0,3), L (2), Р(1,8).

1676. Белый медведь весит 720 кг, а масса бурого составляет 40 % массы белого медведя. Обчисли массу бурого медведя.

1677. Упрости выражение 2,7 x - 0,05 x + 0,75 x и найди его значение, если х = 2,7.

1678. Основа равнобедренного треугольника равна 10,8 см, а длина боковой стороны составляет длины основы. Найди периметр треугольника.

1679. Упрости выражение и обчисли его значение:

1) 2,7 а ∙ 2, если а = 3,5;

2) 3,2 x ∙ 5у, если x = 0,1; в = 1,7.

1680. Найди объем прямоугольного параллелепипеда, измерения которого равны:

1) 1,2 см, 5 см, 1,8 см; 2) 1,2 дм, 3 см, 23 мм.

1681. Вырази в тоннах и запиши в виде десятичной дроби:

1) 7314 кг; 2) 2 т 511 кг; 3) 3 ц 12 кг; 4) 18 кг.

1682. Вырази в метрах и запиши в виде десятичной дроби:

1) 527 см; 2) 12 дм; 3) 3 м 5 дм; 4) 5 м 4 см. 336

Достаточный уровень

1683. Выполни деление, полученную долю округли:

1) 110: 57 до единиц; 2) 18: 7 до десятых;

3) 15,2: 0,7 до сотых; 4) 14: 5,1 до тысячных.

1684. Выполни деление, полученную долю округли:

1) 120: 37 до десятых; 2) 5,2: 0,17 до сотых.

1685. Завод работал 15 дней и выпускал ежедневно в среднем по 45,4 т минеральных удобрений. Все удобрения загрузили в 25 железнодорожных вагонов поровну. Сколько удобрений погрузили в каждый вагон?

1686. Сумма двух длин треугольника равна 15 см, а длина третьей стороны составляет 80 % этой суммы. Найди периметр треугольника.

1687. Одна из сторон прямоугольника равна 14,4 см, а длина второго составляет 75 % первой. Найди площадь и периметр этого прямоугольника.

1688. Периметр треугольника равен 36 см. Длина одной из сторон составляет периметра, а длина второй - 40 % периметра. Найди стороны треугольника.

1689. Длина прямоугольного параллелепипеда равна 16 дм, ширина составляет длины, а высота - 70 % ширины. Найди объем прямоугольного параллелепипеда.

1690. Найди сумму трех чисел, первое из которых равна 4,27, а каждое следующее в 10 раз больше вперединет.

1691. Высота прямоугольного параллелепипеда равна 16 см, что составляет длины и 40 % ширины. Найди объем прямоугольного параллелепипеда.

1692. Одна сторона прямоугольника равна 8,5 см, а вторая составляет 60 % первой. Найди периметр и площадь прямоугольника.

1693. Один из рабочих изготовил 96 деталей за 6 ч, а другой - 45 деталей за 2,5 часа. За сколько часов они изготовят 119 деталей, работая вместе?

1694. Что выгоднее купить?

1695. Что выгоднее купить?

1696. Составь задачи по схемам и реши их.

1697. Составь задачи по схемам и реши их.

1698. На сколько увеличится объем куба, если его ребро увеличить с 2,5 см до 3,5 см?

1699. Составь числовое выражение и найди его значение:

1) разность сумм чисел 2,72 и 3,82 и

2) произведение разности чисел 18,93 и 9,83 и числа 10.

1700. Из поселка А в поселок В одновременно выехали два велосипедиста со скоростями 15,6 км/ч и 18,4 км/час. Через 3,5 час один из велосипедистов прибыл в поселок В. Сколько километров должен проехать другой велосипедист?

1701. Из одного города одновременно в противоположных направлениях выехали два автомобиля. Скорость одного из них - 76 км/ч, что составляет 95 % скорости другого. Через сколько часов расстояние между автомобилями будет 390 км?

1702. Реши уравнения:

1) 1,17 x + 0,32 x = 3,725;

2) 4,7 x - 1,2 x = 4,34;

3) 2,47 x - 1,32 x + 1,3 = 4,221;

4) 1,4 x + 2,7 x - 8,113 = 2,342.

1703. Реши уравнения:

1) 4,13 x - 0,17 x = 9,9;

2) 5,3 x + 4,8 x - 5,13 = 43,35.

1704. Развернутый угол разделили лучами на треуголки. Первый составляет развернутого, а второй - первого. Найди градусные меры трех образованных углов.

1705. Составь задачи по схемам и реши их:

1706. Составь задачи по схемам и реши их:

1707. Реши уравнения:

1) 2,7(x - 4,7) = 9,45; 2) (4,7 + x ) : 3,8 = 10,5;

3) 2,4 + (x : 3 - 5) = 0,8; 4) 2,45: (2 x - 1,4) = 3,5.

1708. Реши уравнения:

1) 21: (4 x + 1,6) = 2,5;

2) 3,7 - (x : 2 + 1,5) = 0,8.

1709. С 2,5 г медного провода, масса 1 м которого 1,2 кг, и куска латунной проволоки, длина которого в 8 раз больше медный, а масса 1 м составляет 0,2 кг, изготовили шар. Сколько сплава останется, если масса пули 6,4 кг?

1710. Купили 2,5 кг печенья по цене 13,6 грн. за килограмм и конфет 1,6 кг, цена за один килограмм в 1,5 раза больше за цену одного килограмма печенья. Какую сдачу должны получить со 100 грн.?

1711. Заполни клетки цифрами, чтобы образовались правильные примеры:

1712. Заполни ячейки такими цифрами, чтобы образовались правильные примеры:

1713. Число 5,2 является средним арифметическим чисел 2,1; 3,2 и х. Найди х.

1714. Найди среднее арифметическое четырех чисел, первое из которых равно 3,6, а каждое следующее на 0,2 больше предыдущего.

1715. Из одного города в другой в одном направлении одновременно отправились двое мотоциклистов со скоростью 72,4 км/ч и 67,8 км/час. Через какое время расстояние между мотоциклистами будет 11,5 км?

1716. Цена некоторого товара 120 грн. Сколько будет стоить этот товар, если цену:

1) увеличить на 15 %;

2) уменьшить на 10 %;

3) сначала увеличить на 5 %, а затем новую цену уменьшить на 20 %?

1717. Найди числа, которых не хватает в цепочке вычислений:

1718. Автомобиль проехал за первые два часа 170,4 км, а за следующую - 0,45 этого расстояния. Найди среднюю скорость автомобиля.

1719. Поезд проехал за первые три часа 210,5 км, а за следующие две - 0,6 этого расстояния. Найди среднюю скорость поезда.

1720. Сторона равностороннего треугольника равна 11,2 см. Найди сторону квадрата, периметр которого равен периметру треугольника. Определи площадь этого квадрата.

1721. Найди заштрихованная часть круга:

1722. Найди сумму трех чисел, первое из которых равна 37,6, второе составляет от первого, а третий является средним арифметическим первых двух.

1723. Лодка прошла за 6 ч против течения реки 231 км. Какой путь он пройдет по течению реки за 4 ч, если скорость течения составляет 1,4 км/ч?

1724. Из двух пунктов, расстояние между которыми 8,5 км, в противоположных направлениях, удаляясь друг от друга, одновременно вышли двое пешеходов. Скорость одного из них 4,2 км/ч, что составляет скорости второго. Какое расстояние будет между пешеходами через 2,5 ч?

1725. Автомобиль двигался 4 часа со скоростью 82,5 км/ч и 6 часов со скоростью 83,7 км/час. Найди среднюю скорость автомобиля на всем пути.

Высокий уровень

1726. Карлсон и Малыш вместе съели 3,6 кг варенья, причем Карлсон съел в 3 раза больше, чем Малыш. Сколько варенья съел Карлсон и сколько Малыш?

1727. Груз массой 4,8 т разместили на двух грузовых автомобилях, причем на первый погрузили на 0,6 т больше, чем на второй. Сколько тонн груза в каждом автомобиле?

1728. Рабочие, работая втроем, за 7 ч изготовили 1001 деталь. Причем первый изготовил всех деталей, а второй - всех деталей. Сколько деталей в час изготовил третий рабочий?

1729. От некоторого числа вычли 10 % и получили 48,6. Найди это число.

1730. К некоторому числу прибавили его 20 % и получили 74,4. Найди это число.

1731. Найди два числа, если их сумма 4,7, а разница 3,1.

1732. Сумма двух чисел равна 27,2. Найди эти числа, если одно из них в три раза больше за другое.

1733. Веревку длиной 10,6 м разрезали на три части. Найди их длины, если третья часть на 0,4 м больше как за первую, так и вторую.

1734. Собственная скорость катера в 13 раз больше скорости течения. Двигаясь по течению 2,5 ч, катер преодолел 63 км. Найди собственную скорость катера и скорость течения.

1735. С двух станций, расстояние между которыми равно 385 км, отправились одновременно навстречу друг другу два поезда и встретились через 2,5 часа. Найди скорости поездов, если известно, что скорость одного из них в 1,2 раза больше скорости другого.

1736. Сумма длины и ширины прямоугольника равна 9,6 см, причем ширина составляет 60 % длины. Найди площадь и периметр прямоугольника.

1737. Длина одной стороны треугольника составляет периметра, а длина другой стороны - периметра. Найди длины этих сторон, если третья сторона равна 10,4 см.

1738. Ученик прочитал сначала 0,25 всей книги, а потом еще 0,4 остальных, после чего оказалось, что ученик прочитал 30 страниц больше, чем ему осталось прочитать. Сколько страниц в книге?

1739. Найди значение букв g , h , m , n , k , l , если:

g: n = 1,8; n ∙ k = 1,71; h + m = 2,13;

k + l = 10,44; m ∙ 0,9 = 1,17; g - h = 0,79.

1740. IS В трех ящиках вместе 62,88 кг товара. В первом ящике товара в 1,4 раза больше, чем во втором, а в третьем - столько товара, сколько его в первом и втором вместе. Сколько килограммов товара в каждом ящике?

Упражнения для повторения

1741. 1) Выполни действия:

2) Выполни действия:

3) Сравни числа, обозначены фигурами:

1742. 1) Выполни действия:

2) Выполни действия:

2. Найди среднее арифметическое чисел 1,8 и 2,6.

А) 1,8; Б) 2; В) 2,6; Г) 2,2.

3. Запиши в виде десятичной дроби смешанное число

А) 3,13; Б) 13,3; В) 13,003; Г) 13,03.

4. После перегонки нефти получают 30 % керосина. Сколько керосина получают с 18 т нефти?

А) 6 т; Б) 5,4 т; В) 54 т; Г) 0,6 т.

5. Из молока получается 9 % сыра. Сколько было взято молока, если сыра получили 36 кг?

А) 400 кг; Б) 40 кг; В) 324 кг; Г) 300 кг.

6. В команде баскетболистов двоим игрокам по 19 лет, двоим - по 21 году, а одному игроку - 26 лет. Какой средний возраст игроков этой команды?

A ) 19 лет; Б) 21 год;

B ) 21,2 года; Г) 21,4 года.

7. Во время сушки грибы теряют 89 % своей массы. Сколько сухих грибов получим из 60 кг свежих?

А) 53,4 кг; Б) 6,6 кг; В) 6 кг; Г) 5,34 кг.

8. Когда ученик прочитал 30 % книги, то заметил, что ему осталось прочитать еще 105 страниц. Сколько страниц в книге?

А) 350 сек.; Б) 250 сек.; В) 150 сек.; Г) 160с.

9. Один из операторов компьютерного набора набрал 45 страниц текста за 6 часов, а другой - 26 страниц текста за 4 часа. За сколько часов, работая вместе, они наберут 35 страниц?

А) 2 ч; Б) 2,5 ч В) 3 ч; Г) 3,5 часа.

10. В ящике находятся белые и черные шары, причем белые составляют 30 % всех шариков. Сколько в ящике шаров всего, если черных шаров на 32 больше, чем белых?

А) 80; Б) 70; В) 56; Г) 180.

11. Среднее арифметическое двух чисел, одно из которых в 4 раза больше другого, равна 6. Найдите меньшее из этих двух чисел.

А) 1,5; Б) 2,4; В) 2,5; Г) 9,6.

12. Цена некоторого товара 150 грн. Сколько будет стоить этот товар, если изначально цену товара увеличить на 10 %, а затем новую цену уменьшить на 15 %?

А) 142,5 грн.; Б) 157,5 грн.;

в) 155 грн.; Г) 140,25 грн.

Задания для проверки знаний № 9 (§42 - §45)

1. Запиши в виде десятичной дроби:

1) 15 %; 2) 3 %.

2. Запиши в процентах десятичную дробь:

1) 0,45; 2) 1,37.

3. Выполни действия:

1) 3,7 + 13,42; 2) 15,8 - 13,12;

3) 4,2 ∙ 2,05; 4) 8,64: 2,4.

4. Из 1200 учащихся, обучающихся в школе, 65 % принимали участие в спартакиаде. Сколько учеников принимали участие в спартакиаде?

5. Сергей купил книгу за 8 грн., что составляет 40 % денег, которые у него были. Сколько гривен было у Сергея?

6. Найди среднее арифметическое чисел 48,5; 58,2; 46,8; 42,2.

7. Рабочий изготовил 320 деталей. За первый час - 35 % всех деталей, второй - 40 %, а за третью - остальные. Сколько деталей рабочий изготовил за третий час?

8. Автомобиль ехал 2 ч со скоростью 66,7 км/ч и 3 ч со скоростью 72,8 км/ч. Найди его среднюю скорость на всем пути.

9. Турист прошел за три дня 56 км. За первый день он прошел 30 % всего пути, что составляет 80 % расстояния, пройденного туристом за второй день. Сколько километров прошел турист за третий день?

10. Дополнительное задание. Длина прямоугольного параллелепипеда равна 8,5 см, что в 2,5 раза больше ширины и на 5,1 см больше высоту. Найди объем этого прямоугольного параллелепипеда.

11. Дополнительное задание. Среднее арифметическое двух чисел равен 12,4, а среднее арифметическое восьми других чисел - 10,7. Найди среднее арифметическое этих десяти чисел.

Данный материал мы посвятим такой важной теме, как десятичные дроби. Сначала определимся с основными определениями, приведем примеры и остановимся на правилах десятичной записи, а также на том, что из себя представляют разряды десятичных дробей. Далее выделим основные виды: конечные и бесконечные, периодические и непериодические дроби. В финальной части мы покажем, как точки, соответствующие дробным числам, расположены на оси координат.

Yandex.RTB R-A-339285-1

Что такое десятичная запись дробных чисел

Так называемая десятичная запись дробных чисел может быть использована как для натуральных, так и для дробных чисел. Она выглядит как набор из двух и более цифр, между которыми есть запятая.

Десятичная запятая нужна для того, чтобы отделять целую часть от дробной. Как правило, последняя цифра десятичной дроби не бывает нулем, за исключением случаев, когда десятичная запятая стоит сразу после первого же нуля.

Какие можно привести примеры дробных чисел в десятичной записи? Это может быть 34 , 21 , 0 , 35035044 , 0 , 0001 , 11 231 552 , 9 и др.

В некоторых учебниках можно встретить использование точки вместо запятой (5 . 67 , 6789 . 1011 и др.) Это вариант считается равнозначным, но он более характерен для англоязычных источников.

Определение десятичных дробей

Основываясь на указанном выше понятии десятичной записи, мы можем сформулировать следующее определение десятичных дробей:

Определение 1

Десятичные дроби представляют собой дробные числа в десятичной записи.

Для чего нам нужна запись дробей в такой форме? Она дает нам некоторые преимущества перед обыкновенными, например, более компактную запись, особенно в тех случаях, когда в знаменателе стоят 1000 , 100 , 10 и др. или смешанное число. Например, вместо 6 10 мы можем указать 0 , 6 , вместо 25 10000 – 0 , 0023 , вместо 512 3 100 – 512 , 03 .

О том, как правильно представить в десятичном виде обыкновенные дроби с десятками, сотнями, тысячами в знаменателе, будет рассказано в рамках отдельного материала.

Как правильно читать десятичные дроби

Существуют некоторые правила чтения записей десятичных дробей. Так, те десятичные дроби, которым соответствуют их правильные обыкновенные эквиваленты, читаются почти так же, но с добавлением слов «ноль десятых» в начале. Так, запись 0 , 14 , которой соответствует 14 100 , читается как «ноль целых четырнадцать сотых».

Если же десятичной дроби можно поставить в соответствие смешанное число, то она читается тем же образом, как и это число. Так, если у нас есть дробь 56 , 002 , которой соответствует 56 2 1000 , мы читаем такую запись как «пятьдесят шесть целых две тысячных».

Значение цифры в записи десятичной дроби зависит от того, на каком месте она расположена (так же, как и в случае с натуральными числами). Так, в десятичной дроби 0 , 7 семерка – это десятые доли, в 0 , 0007 – десятитысячные, а в дроби 70 000 , 345 она означает семь десятков тысяч целых единиц. Таким образом, в десятичных дробях тоже существует понятие разряда числа.

Названия разрядов, расположенных до запятой, аналогичны тем, что существуют в натуральных числах. Названия тех, что расположены после, наглядно представлены в таблице:

Разберем пример.

Пример 1

У нас есть десятичная дробь 43 , 098 . У нее в разряде десятков находится четверка, в разряде единиц тройка, в разряде десятых – ноль, сотых – 9 , тысячных – 8 .

Принято различать разряды десятичных дробей по старшинству. Если мы движемся по цифрам слева направо, то мы будем идти от старших разрядов к младшим. Получается, что сотни старше десятков, а миллионные доли младше, чем сотые. Если взять ту конечную десятичную дробь, которую мы приводили в качестве примера выше, то в ней старшим, или высшим будет разряд сотен, а младшим, или низшим – разряд 10 -тысячных.

Любую десятичную дробь можно разложить по отдельным разрядам, то есть представить в виде суммы. Это действие выполняется так же, как и для натуральных чисел.

Пример 2

Попробуем разложить дробь 56 , 0455 по разрядам.

У нас получится:

56 , 0455 = 50 + 6 + 0 , 4 + 0 , 005 + 0 , 0005

Если мы вспомним свойства сложения, то сможем представить эту дробь и в других видах, например, как сумму 56 + 0 , 0455 , или 56 , 0055 + 0 , 4 и др.

Что такое конечные десятичные дроби

Все дроби, о которых мы говорили выше, являются конечными десятичными дробями. Это означает, что количество цифр, расположенное у них после запятой, является конечным. Выведем определение:

Определение 1

Конечные десятичные дроби представляют собой вид десятичных дробей, у которых после знака запятой стоит конечное число знаков.

Примерами таких дробей могут быть 0 , 367 , 3 , 7 , 55 , 102567958 , 231 032 , 49 и др.

Любую из этих дробей можно перевести либо в смешанное число (если значение их дробной части отличается от нуля), либо в обыкновенную дробь (при нулевой целой части). Тому, как это делается, мы посвятили отдельный материал. Здесь просто укажем пару примеров: так, конечную десятичную дробь 5 , 63 мы можем привести к виду 5 63 100 , а 0 , 2 соответствует 2 10 (или любая другая равная ей дробь, например, 4 20 или 1 5 .)

Но обратный процесс, т.е. запись обыкновенной дроби в десятичном виде, может быть выполнен не всегда. Так, 5 13 нельзя заменить на равную дробь с знаменателем 100 , 10 и др., значит, конечная десятичная дробь из нее не получится.

Основные виды бесконечных десятичных дробей: периодические и непериодические дроби

Мы указывали выше, что конечные дроби называются так потому, что после запятой у них стоит конечное число цифр. Однако оно вполне может быть и бесконечным, и в этом случае сами дроби также будут называться бесконечными.

Определение 2

Бесконечными десятичными дробями называются такие, у которых после запятой стоит бесконечное количество цифр.

Очевидно, что полностью такие числа записаны быть просто не могут, поэтому мы указываем лишь часть из них и дальше ставим многоточие. Это знак говорит о бесконечном продолжении последовательности знаков после запятой. Примерами бесконечных десятичных дробей могут быть 0 , 143346732 … , 3 , 1415989032 … , 153 , 0245005 … , 2 , 66666666666 … , 69 , 748768152 … . и т.д.

В «хвосте» такой дроби могут стоять не только случайные на первый взгляд последовательности цифр, но постоянное повторение одного и того же знака или группы знаков. Дроби с чередованием после десятичной запятой называются периодическими.

Определение 3

Периодическими десятичными дробями называются такие бесконечные десятичные дроби, у которых после запятой повторяется одна цифра или группа из нескольких цифр. Повторяющаяся часть называется периодом дроби.

К примеру, для дроби 3 , 444444 … . периодом будет цифра 4 , а для 76 , 134134134134 … – группа 134 .

Какое же минимальное количество знаков допустимо оставить в записи периодической дроби? Для периодических дробей достаточно будет записать весь период один раз в круглых скобках. Так, дробь 3 , 444444 … . правильно будет записать как 3 , (4) , а 76 , 134134134134 … – как 76 , (134) .

В целом записи с несколькими периодами в скобках будут иметь точно такой же смысл: к примеру, периодическая дробь 0 , 677777 – это то же самое, что 0 , 6 (7) и 0 , 6 (77) и т.д. Также допустимы записи вида 0 , 67777 (7) , 0 , 67 (7777) и др.

Во избежание ошибок введем однообразие обозначений. Условимся записывать только один период (максимально короткую последовательность цифр), который стоит ближе всего к десятичной запятой, и заключать его в круглые скобки.

То есть для указанной выше дроби основной будем считать запись 0 , 6 (7) , а, например, в случае с дробью 8 , 9134343434 будем писать 8 , 91 (34) .

Если знаменатель обыкновенной дроби содержит простые множители, не равные 5 и 2 , то при переводе в десятичную запись из них получатся бесконечные дроби.

В принципе, любую конечную дробь мы можем записать в виде периодической. Для этого нам просто нужно добавить справа бесконечно много нулей. Как это выглядит в записи? Допустим, у нас есть конечная дробь 45 , 32 . В периодическом виде она будет выглядеть как 45 , 32 (0) . Это действие возможно потому, что добавление нулей справа в любую десятичную дробь дает нам в результате равную ей дробь.

Отдельно следует остановиться на периодических дробях с периодом 9 , например, 4 , 89 (9) , 31 , 6 (9) . Они являются альтернативной записью схожих дробей с периодом 0 , поэтому их часто заменяют при письме именно дробями с нулевым периодом. При этом к значению следующего разряда добавляют единицу, а в круглых скобках указывают (0) . Равенство получившихся чисел легко проверить, представив их в виде обыкновенных дробей.

К примеру, дробь 8 , 31 (9) можно заменить на соответствующую ей дробь 8 , 32 (0) . Или 4 , (9) = 5 , (0) = 5 .

Бесконечные десятичные периодические дроби относятся к рациональным числам. Иначе говоря, любую периодическую дробь можно представить в виде обыкновенной, и наоборот.

Существуют и дроби, у которых после запятой бесконечно повторяющаяся последовательность отсутствует. В таком случае их называют непериодическими дробями.

Определение 4

К непериодическим десятичным дробям относятся те бесконечные десятичные дроби, в которых после запятой не содержится периода, т.е. повторяющейся группы цифр.

Иногда непериодические дроби выглядят очень похожими на периодические. Например, 9 , 03003000300003 … на первый взгляд кажется имеющей период, однако подробный анализ знаков после запятой подтверждает, что это все же непериодическая дробь. С такими числами надо быть очень внимательным.

Непериодические дроби относятся к иррациональным числам. В обыкновенные дроби их не переводят.

Основные действия с десятичными дробями

С десятичными дробями можно производить следующие действия: сравнение, вычитание, сложение, деление и умножение. Разберем каждое из них отдельно.

Сравнение десятичных дробей может быть сведено к сравнению обыкновенных дробей, которые соответствуют исходным десятичным. Но бесконечные непериодические дроби свести к такому виду нельзя, а перевод десятичных дробей в обыкновенные зачастую является трудоемкой задачей. Как же быстро произвести действие сравнения, если нам нужно сделать это по ходу решения задачи? Удобно сравнивать десятичные дроби по разрядам таким же образом, как мы сравниваем натуральные числа. Этому методу мы посвятим отдельную статью.

Чтобы складывать одни десятичные дроби с другими, удобно использовать метод сложения столбиком, как для натуральных чисел. Чтобы складывать периодические десятичные дроби, необходимо предварительно заменить их обыкновенными и считать по стандартной схеме. Если же по условиям задачи нам надо сложить бесконечные непериодические дроби, то нужно перед этим округлить их до некоторого разряда, а потом уже складывать. Чем меньше разряд, до которого мы округляем, тем выше будет точность вычисления. Для вычитания, умножения и деления бесконечных дробей предварительное округление также необходимо.

Нахождение разности десятичных дробей обратно действию сложения. По сути, с помощью вычитания мы можем найти такое число, сумма которого с вычитаемой дробью даст нам уменьшаемую. Подробнее об этом расскажем в рамках отдельного материала.

Умножение десятичных дробей производится так же, как и для натуральных чисел. Для этого тоже подходит метод вычисления столбиком. Это действие с периодическими дробями мы опять же сводим к умножению обыкновенных дробей по уже изученным правилам. Бесконечные дроби, как мы помним, надо округлить перед подсчетами.

Процесс деления десятичных дробей является обратным процессу умножения. При решении задач мы также пользуемся подсчетами в столбик.

Можно установить точное соответствие между конечной десятичной дробью и точкой на оси координат. Выясним, как отметить точку на оси, которая будет точно соответствовать необходимой десятичной дроби.

Мы уже изучали, как построить точки, соответствующие обыкновенным дробям, а ведь десятичные дроби можно привести к такому виду. Например, обыкновенная дробь 14 10 – это то же самое, что и 1 , 4 , поэтому соответствующая ей точка будет удалена от начала отсчета в положительном направлении ровно на такое же расстояние:

Можно обойтись без замены десятичной дроби на обыкновенную, а взять на основу метод разложения по разрядам. Так, если нам надо отметить точку, координата которой будет равна 15 , 4008 , то мы предварительно представим это число в виде суммы 15 + 0 , 4 + , 0008 . Для начала отложим от начала отсчета 15 целых единичных отрезков в положительном направлении, потом 4 десятых доли одного отрезка, а потом 8 десятитысячных долей одного отрезка. В итоге мы получим точку координат, которой соответствует дробь 15 , 4008 .

Для бесконечной десятичной дроби лучше пользоваться именно этим способом, поскольку он позволяет приблизиться к нужной точке сколь угодно близко. В некоторых случаях можно построить и точное соответствие бесконечной дроби на оси координат: так, 2 = 1 , 41421 . . . , и с этой дробью может быть соотнесена точка на координатном луче, удаленная от 0 на длину диагонали квадрата, сторона которого будет равна одному единичному отрезку.

Если мы находим не точку на оси, а десятичную дробь, соответствующую ей, то это действие называется десятичным измерением отрезка. Посмотрим, как правильно это сделать.

Допустим, нам нужно попасть от нуля в заданную точку на оси координат (или максимально приблизиться в случае с бесконечной дробью). Для этого мы постепенно откладываем единичные отрезки от начала координат, пока не попадем в нужную точку. После целых отрезков при необходимости отмеряем десятые, сотые и более мелкие доли, чтобы соответствие было максимально точным. В итоге мы получили десятичную дробь, которая соответствует заданной точке на оси координат.

Выше мы приводили рисунок с точкой M . Посмотрите на него еще раз: чтобы попасть в эту точку, нужно отмерить от нуля один единичный отрезок и четыре десятых доли от его, поскольку этой точке соответствует десятичная дробь 1 , 4 .

Если мы не можем попасть в точку в процессе десятичного измерения, то значит, что ей соответствует бесконечная десятичная дробь.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Состоит из трех частей, каждая из которых содержит 48 карточек с примерами на совместное выполнение сложения и вычитания, умножения и деления, а также всех четырех арифметических действий с десятичными дробями. Все карточки однотипны и включают в себя примеры различной трудности с учетом особенностей, характерных для отдельных действий. Каждой карточка состоит из восьми примеров, содержащих от четырех до шести действий, причем примеры с одинаковыми номерами аналогичны друг другу. Так первые два примера всех карточек пятой и шестой частей не содержат скобок, в третьих и четвертых примерах обязательно присутствует одна пара скобок, в пятых и шестых - две пары скобок, в седьмых - три пары, а восьмые примеры содержат скобки в скобках. Аналогичным образом подобны друг другу и примеры седьмой части. Для качественной проработки всех арифметических действий карточки были составлены таким образом, что: - в каждом примере на сложение и вычитание (часть 5) обязательно есть целое слагаемое, а один из промежуточных ответов является целым числом; - в каждом примере на умножение и деление (часть 6) обязательно присутствует множитель, являющийся целой (положительной или отрицательной) степенью десятки, причем в каждом варианте встречаются все четыре случая (уножение и деление на положительную и на отрицательную степень десятки). Кроме того, в КАЖДОМ НЕЧЕТНОМ ПРИМЕРЕ КАЖДОГО ВАРИАНТА содержится по крайней мере одно действие деления, частное которого имеет НУЛЕВОЙ СРЕДНИЙ РАЗРЯД. В других примерах таких частных нет; - в каждом примере седьмой части присутствуют все четыре арифметических действия и по возможности реализованы особенности примеров из пятой и шестой частей. Для этого в каждом примере одно из действий сложения или вычитания производится с целым числом или дает целый результат. Все примеры этой части, в которых при делении получается ЧАСТНОЕ СО СРЕДНИМ НУЛЕВЫМ РАЗРЯДОМ, отмечены в ответах знаком (!) после своего номера, причем ТАКИЕ ЧАСТНЫЕ ОБЯЗАТЕЛЬНЫ ВО ВТОРОМ И ЧЕТВЕРТОМ ПРИМЕРАХ КАЖДОГО ВАРИАНТА. Кроме того, в каждом варианте встречаются и уножение и деление как на положительную, так и на отрицательную степень десятки. ВСЕ ЗАДАНИЯ ВСЕХ ВАРИАНТОВ СНАБЖЕНЫ ОТВЕТАМИ ПО КАЖДОМУ ДЕЙСТВИЮ, причем КОНЕЧНЫЙ ОТВЕТ КАЖДОГО ПРИМЕРА определенным образом СВЯЗАН С ЕГО ПОРЯДКОВЫМ НОМЕРОМ И НОМЕРОМ ВАРИАНТА, то есть вторым числом после номера части. А именно: - конечный ответ любого примера пятой части представляет собой число, целая часть которого является номером варианта, а дробная часть - порядковым номером примера. Так ответом четвертого примера варианта 5.20 (то есть двадцатого варианта пятой части) является число 20,4; - конечный ответ любого примера шестой части представляет собой число, целая часть которого также является номером варианта, а дробная часть состоит из двух цифр - нуля и номера примера. Так седьмой пример варианта 6.12 имеет конечный ответ 12,07; - конечный ответ любого примера седьмой части является числом, целая часть которого равна сумме номера варианта и номера примера, а дробная часть образована так же, как и в шестой части. Таким образом, третий пример варианта 7.28 имеет конечный ответ 31,03. Большое количество различных вариантов по каждой теме позволяет учителю легко организовать в классе индивидуальную работу всех учащихся. Данные карточки могут многократно применяться на уроках при отработке вычислительных навыков у учащихся, на самостоятельных и контрольных работах, на дополнительных занятиях, в качестве домашнего задания и т.п. Кроме того, данный дидактический материал может использоваться при изучении правил раскрытия скобок и изменения порядка действий для облегчения вычислений. Конечно, данные карточки будут полезны и при обучении учащихся работе на микрокалькуляторах. Формирование и решение всех заданий выполнено на компьютере по оригинальным программам.

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:


Примеры (1):


Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):


Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.


*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:


Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:


В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ .

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ .

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры:

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17 119 = 7∙17

в разложении большего числа не хватает тройки

=> НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:


*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

Задача. На базу привезли 13 тонн овощей. Картофель составляет ¾ от всех завезённых овощей. Сколько килограмм картофеля завезли на базу?

С произведением закончим.

*Ранее обещал вам привести формальное объяснение основного свойства дроби через произведение, пожалуйста:

3. Деление дробей.

Деление дробей сводится к их умножению. Здесь важно запомнить, что дробь являющаяся делителем (та, на которую делят) переворачивается и действие меняется на умножение:

Данное действие может быть записано в виде так называемой четырёхэтажной дроби, ведь само деление «:» тоже можно записать как дробь:

Примеры:

На этом всё! Успеха вам!

С уважением, Александр Крутицких.