Молекулярная физика. Испарение и конденсация



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).


Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением .

Испарение - это парообразование, происходящее только со свободной поверхности жидкости, граничащей с газообразной средой или с вакуумом .

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости.

Испарение

ЖИДКОСТЬ ПАР

Экспериментально установлено что при испарении температура тела понижается.

При испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Если смазать спиртом часть руки, то она будет охлаждаться, потому что, испаряясь, жидкость отнимает часть внутренней энергии руки, вследствие чего ее температура понижается.

А теперь выясним, от каких факторов зависит скорость испарения

Скорость испарения зависит от следующих факторов

:

Температура

Площадь поверхности

Род вещества

Наличие ветра

От влажности воздуха

Важнейший фактор, влияющий на скорость испарения – это температура. Наблюдения за лужами после дождя летом и осенью доказывают, что испарение происходит при любой температуре, так как частицы находятся в движении при любой температуре.

Смочим два одинаковых полотенца водой. Одно полотенце мы развешаем на солнце, а другое разместим в тени. На солнце полотенце высохнет быстрее, так как его нагрели солнечные лучи и испарение произошло быстрее.

Чем выше температура окружающей среды, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Следующий фактор, влияющий на скорость испарения – это площадь поверхности.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения. Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

Интенсивность испарения зависит от рода жидкости: чем меньше притяжение между молекулами жидкости, тем интенсивнее испарениеЕсли налить в одно блюдце растительное масло, а в другое – воду. То вода испарится намного быстрее. Смочив ватку спиртом, мы наблюдаем испарение за несколько минут.

Спирт испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра. Мы знаем, что струя горячего воздуха в фене способна быстро высушить наши волосы. А листья деревьев после дождя высыхают быстрее в ветряную погоду.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

Кафедра ЭТТ. Дисциплина «Основы технологии электронной компонентной базы»

Лабораторная работа № 1. Особенности нанесения пленок

При термовакуумном испарении

Цель работы : ознакомление с особенностями генерации и распространения потока молекул в вакууме и c распределением толщины пленки по поверхности подложки большой площади при термовакуумном испарении.

Основные понятия и соотношения

При термовакуумном испарении поток атомов или молекул вещества генерируется при нагревании материала в вакууме до температуры, близкой или превышающей его температуру плавления.

Испарениес поверхности жидкой фазы наиболее часто используется в технике. Для объяснения механизма процесса было предложено несколько моделей. В простейшей из них жидкая фаза (расплавленный материал) рассматривается как система осцилляторов, поверхностные молекулы которой связаны с определенной энергией испарения. Предполагается, что переход в газообразную фазу происходит тогда, когда энергия колебаний молекул на поверхности равна или превосходит энергию испарения. Предполагается также, что все молекулы поверхности имеют одну и ту же энергию связи и равную вероятность испарения. Вследствие интерференции колебаний осцилляторов становится возможным испарение отдельных молекул.

В усовершенствованной статистической модели состояние молекул на поверхности описывается максвелловским распределением по энергии и пространственным распределением, связывающим смещение молекул от равновесного положения с их потенциальной энергией. Испарение молекулы происходит тогда, когда она смещается на такое расстояние, что ее потенциальная энергия становится равной энергии испарения.

Экспериментальные исследования показали, что статистическая модель достаточно хорошо применима к жидкостям, испарение которых происходит за счет обмена одиночных атомов с одноатомным паром (ртуть, калий, бериллий и ряд других металлов). Аналогично ведут себя и некоторые органические жидкости, молекулы которых имеют сферическую симметрию и малые энтропии испарения (например, четыреххлористый углерод – CCl 4).

В веществах, молекулы которых имеют различные степени свободы в конденсированном и газообразном состояниях, при испарении должно происходить изменение не только поступательного движения, но и внутренней энергии молекул. В тоже время статистически маловероятно, что молекула на поверхности получает в один и тот же момент как кинетическую, так и потенциальную энергии, необходимые для испарения при термодинамическом равновесии. Более вероятно, что молекула получает вначале необходимую кинетическую энергию, а затем должна до момента испарения получить квант внутренней энергии.

Полагают, что среди различных видов внутренней энергии молекул, наибольшее влияние на вероятность испарения оказывает энергия вращения. Это подтверждается тем, что время релаксации, необходимое для получения вращательной степени свободы молекулой с добавленной кинетической энергией, больше, чем для других процессов. Таким образом, ограничение испарения происходит вследствие потери одной степени свободы, которая уменьшает число возможных состояний для молекул в жидкой фазе. Такая форма ограничения фазового перехода называется ограничением по энтропии.

Испарение с ограничением по энтропии подтверждается для жидкостей с малыми полярными молекулами, которые испаряются с невозмущенных поверхностей (бензин, хлороформ, этанол, метанол и др.). Некоторые органические жидкости имеют вращательную степень свободы и в активированном состоянии.

При испарении металлов основным видом частиц в газовой фазе являются одиночные атомы металла и лишь небольшую часть (меньше 0,1%) составляют двухатомные молекулы. Для некоторых элементов (C, S, Se, Te , P, As, Sb) пары состоят из многоатомных молекул.

Испарение с поверхности твердой фазы , называемое сублимацией, объясняется наличием на поверхности материала моноатомных ступенек и состояний с различным числом атомов в первом и последующем слое. Так как силы связи, действующие на данный атом со стороны соседних атомов, являются аддитивными (складываются), то значения энергии испарения для атомов в различных состояниях будут различными. В первую очередь испаряются атомы с наименьшим числом связей (соседей), что создает благоприятные условия для испарения других атомов.

При испарении материалов сложного состава необходимо учитывать фракционирование вещества и возможность диссоциации. Весьма важно учитывать особенности взаимодействия испаряемого материала с материалом испарителя.

Пролет частиц вещества от испарителя до поверхности подложки сопровождается их столкновениями между собой и с молекулами остаточных газов. Для уменьшения такого взаимодействия испарение производят при давлении насыщенных паров вещества не более 10 -2 Торр, а остаточных газов – не более 10 -4 – 10 -5 Торр.

Конденсация атомов (молекул) вещества происходит после пролета материала до поверхности подложки. Она зависит от соотношения свободных энергий потока частиц и поверхности. Послойный режим роста пленок (режим Франка – Ван-дер-Мерве) реализуется, если энергия связи атомов осаждаемого вещества с подложкой больше энергии связи атомов друг с другом.

Островковый режим Фольмера-Вебера реализуется тогда, когда атомы вещества связаны друг с другом сильнее, чем с подложкой. Маленькие зародыши растут, превращаясь в большие островки конденсированной фазы. После заполнения промежутков (каналов) между островками, они сливаются и образуют сплошную пленку.

При промежуточном режиме Странского-Крастанова вначале происходит послойный рост одного-двух монослоев. Затем начинается рост островков на их поверхности. При достаточном размере островков они сливаются с образованием сплошной пленки. Одной из причин такого поведения является изменение параметра решетки при заполнении очередного монослоя.

Расчет скорости испарения

Массаиспаряемого вещества , попадающего на элементарную сферическую площадку с испарителя малой площади , определяется следующим соотношением:

, (1)

где – время испарения; – угол между нормалью к поверхности испарителя и направлением к выбранной точке подложки; – радиус сферы, на которой расположена элементарная сферическая площадка с измеряемым количеством вещества .

Скорость испарения вещества в вакууме рассчитывается по формуле:

, (2)

где – скорость испарения, г·см –2 ·с –1 ; – атомный (молекулярный) вес вещества, – давление его насыщенного пара, Торр; – температура, К.

Давление насыщенных паров вещества в объеме испарения определяется соотношением:

, (3)

в котором величины и характеризуют свойства испаряемого материала. Для всех материалов таблицы Менделеева = 8,8 (для Si–10,2); = / 4,576, К; – теплота парообразования, кал/моль. Значения , плотности и температуры плавления ряда металлов приведены в таблице 1.

Для плоской подложки, поверхность которой расположена произвольно относительно поверхности плоского испарителя конечных размеров малой площади, уравнение (1) трансформируется к виду:

, (4)

где - угол между нормалью к поверхности подложки и направлением испарения.

Таблица 1

При практическом применении метода нанесения пленок важно не количество испаренного материала, а толщина получаемых пленок и ее распределение по поверхности подложки.

Расчет толщины пленок

Указанные закономерности распределения испаренного вещества приводят к тому, что распределение толщины пленки по поверхности подложки может иметь сложный характер. Поскольку для элементарной площадки подложки количество материала (где – плотность испаряемого материала), толщина пленки для произвольно расположенной подложки определяется соотношением:

(5)

В этом соотношении положение точки подложки, в которой рассчитывается толщина пленки, определяется тремя величинами .

Для плоского поверхностного испарителя малой площади и плоской подложки, расположенной на расстоянии параллельно поверхности испарителя (рис. 1), толщина пленки определяется соотношением:

, (6)

где ; – координата вдоль поверхности подложки (расстояние от

Рисунок 1. Расположение подложки относительно испарителя

центра подложки в точке А до точки Б , в которой определяется толщина пленки); – нормированное значение координаты; – полное количество испаренного вещества.

Наибольшая толщина пленки получается в точке А подложки, а относительное изменение толщины пленки для разных точек подложки в этом случае имеет вид:

, . (7)

Точечный испаритель представляет собой сферу, размеры которой пренебрежимо малы по сравнению с расстоянием до поверхности подложки и её размерами. С такого испарителя в элементарный телесный угол испаряется количество вещества . Если нанесение плёнки производится на произвольно расположенную плоскую подложку, то, как следует из рисунка, основные соотношения для точечного испарителя принимают следующий вид:

; . (8)

В таблице 2 приведена зависимость относительной толщины от х/h для точечного и поверхностного испарителя.

Таблица – Зависимость равномерности толщины от х/h

х/h 0,25 0,5 0,75
(d/d0)п 0,83 0,64 0,41 0,25 0,04
(d/d0)т 0,88 0,71 0,51 0,35 0,09

Для стандартных размеров подложки 60х48 мм при расстоянии испаритель – подложка в 200 мм неравномерность толщины плёнки составляет около 10 %. А в современных аналого-цифровых преобразователях требования к точности резисторов (разброс по сопротивлениям) составляет не более 0,05 %. Для обеспечения нужной равномерности при нанесении плёнок на подложки как больших, так и малых размеров применяют различные способы:

Использование испарителей большой площади,

Использование кольцевых испарителей,

Применение большого числа одновременно работающих испарителей,

Перемещение подложек по сложной (планетарной) траектории,

Смещение испарителя на строго определённое расстояние относительно центра вращающейся подложки,

Применение вращающихся диафрагм специальной формы при неподвижной подложке.

При применении плоского дискового испарителя конечных размеров радиуса R соответствующие выражения для толщин принимают окончательный вид:

, . (9)

Для кольцевого испарителя радиуса R, центр которого совпадает с центром плоской подложки расположенной параллельно плоскости испарителя, выражение для толщины пленки принимает следующий вид:

. . (10)

Наиболее часто на практике находит применение вариант со смещением испарителя относительно центра вращающейся подложки. Для этого варианта с испарителем малой площади соответствующие выражения принимают вид, аналогичный формулам для кольцевого испарителя. Отличие заключается в том, что вместо радиуса тонкого кольца R в формулу входит расстояние l от испарителя до оси вращения подложки.

. . (11)

Использование вращающихся диафрагм (заслонок) специальной формы основано на дополнительном регулировании количества материала, поступающего от испарителя на тот или иной участок подложки. Очень важно, чтобы центр вращения диафрагмы совпадал с центром испарителя и подложки. Чтобы снизить нежелательное уменьшение толщины, поток испаряемого вещества в наиболее удаленных точках подложки не прекрывается. По мере приближения к геометрическому центру подложки край заслонки должен представлять собой дугу возрастающей длины, так, чтобы длительность прерывания потока на любом данном расстоянии обеспечивала уменьшение скорости осаждения в данном месте до величины скорости в наиболее удаленных точках. Контуры заслонок для однородного покрытия представляют собой спирали, точные линии которых для различных условий получают расчетом на компьютере. Применение вращающихся диафрагм позволяет получить равномерность толщины в пределах долей процента. Недостатком метода является избыточный расход материала, так как перекрывается и оседает на поверхности заслонки основная часть испаряемого материала.

Задание к работе

При домашней подготовке необходимо для заданного материала и толщины пленки испаренного материала определить температуру поверхностного испарителя малой площади, при которой наибольшая толщина пленки d 0 будет равна заданной. Для расчета используются зависимости (2), (3), (7), данные таблицы и вариантов заданий.

При работе в лаборатории необходимо в компьютерном эксперименте получить следующие зависимости:

Распределение абсолютной толщины d(x) для заданной d 0 для поверхностного малой площади, дискового, кольцевого и смещенного относительно центра вращающейся подложки испарителей. (Для трех последних типов испарителя предварительно необходимо подобрать температуру, обеспечивающую одну и ту же толщину d 0 при х=0);

Относительное отклонение толщины пленки заданного материала в зависимости от расстояния x по поверхности подложки при заданной d 0 для исследуемых испарителей;

Для заданного d 0 и размера подложки 100х150 мм 2 выбрать тип испарителя, все его характеристики (кроме F) и расстояние h, обеспечивающие равномерность толщины пленки не хуже 2 %.

Примечание : необходимые для расчета дополнительные сведения приведены в перечне «Варианты задания».

Требования к отчету

Отчет составляется индивидуально на листах формата А4. При домашней подготовке необходимо изучить содержание работы, провести расчет температуры для своего варианта задания, а основные аналитические соотношения и последовательность расчета внести в заготовленный отчет. Подготовленный для защиты отчет должен содержать:

Теоретическую часть и результаты расчета (домашнюю подготовку),

Эскизы конфигурации систем испарения,

Расчетные формулы,

Последовательность расчетов и распределение абсолютной и относительной толщины по диагоналям подложки,

Анализ результатов,

Ответы на контрольные вопросы.

6. Контрольные вопросы

Чем определяется максимально возможная толщина пленки при термовакуумном испарении?

Какие соотношения связывают толщину пленки с температурой испарителя?

Как испаряют порошкообразные материалы?

Какие типы испарителей применяют для испарения порошковых материалов?

Что такое сублимация?

Какие требования предъявляются к материалам испарителей?

При каких условиях происходит послойный рост пленки при испарении?

Как происходит испарение с поверхности твердой фазы?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12