Замерзание водорода. Водород - это что за вещество? Химические и физические свойства водорода

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 0 = CO 2 + 4Н 2 - 165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который применяется иногда и в промышленности,- разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H 2 O + C ⇄ H 2 + CO

3.Из природного газа.

Конверсияс водяным паром: CH 4 + H 2 O ⇄ CO + 3H 2 (1000 °C) Каталитическое окисление кислородом: 2CH 4 + O 2 ⇄ 2CO + 4H 2

4. Крекинг и реформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2 Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e - → H 2 + 2H 2 O

  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) - в виде орто - и пара-водорода.

В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна - Н₂. При обычных условиях - это газ без цвета, запаха и вкуса. Водород - самый лёгкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н 2 =2Н - 432 кДж Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н 2 = СаН 2 и с единственным неметаллом - фтором, образуя фтороводород: F 2 +H 2 =2HF С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может «отнимать» кислород от некоторых оксидов, наприме: CuO + Н 2 = Cu + Н 2 0 Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Далее будет дано и другое определение понятиям «окисление» и «восстановление». А данное определение, исторически первое, сохраняет значение и в настоящее время, особенно в органической химии. Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N 2 + 3H 2 → 2 NH 3

С галогенами образует галогеноводороды :

F 2 + H 2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl 2 + H 2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды :

Na + H 2 → 2 NaH Ca + H 2 → CaH 2 Mg + H 2 → MgH 2

Гидриды - солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никелевого катализатора и повышенной температуре происходит реакция гидрирования :

CH 2 =CH 2 + H 2 → CH 3 -CH 3

Водород восстанавливает альдегиды до спиртов:

CH 3 CHO + H 2 → C 2 H 5 OH.

Геохимия водорода

Водород - основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

  • Водородная энергетика

Атомарный водород используется для атомно-водородной сварки.

В пищевой промышленности водород зарегистрирован в качестве пищевой добавки E949 , как упаковочный газ.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадении на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96 % объёмных. При смеси с воздухом от 4% до 75(74) % объёмных.

Использование водорода

В химической промышленности водород используют при производстве аммиака, мыла и пластмасс. В пищевой промышленности с помощью водорода из жидких растительных масел делают маргарин. Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько ужасных катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют газом гелием. Водород используют также в качестве ракетного топлива. Когда-нибудь водород, возможно, будут широко применять как топливо для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар (правда, само получение водорода приводит к некоторому загрязнению окружающей среды). Наше Солнце в основном состоит из водорода. Солнечное тепло и свет - это результат выделения ядерной энергии при слиянии ядер водорода.

Использование водорода в качестве топлива (экономическая эффективность)

Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2 г) и 0,5 моль O 2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н 2 + 0,5 О 2 = Н 2 О

после завершения реакции образуется 1 моль H 2 O (18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана - 2200 кДж/моль). 1 м³ водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м³ газа, можно делать вывод о целесообразности перехода на водородное топливо.

Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1 м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1м³ для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.

Однако не следует забывать того, что при сжигании водорода мы получаем чистую воду, из которой его и добыли. То есть имеем возобновляемый запасатель энергии без вреда для окружающей среды, в отличие от газа или бензина, которые являются первичными источниками энергии.

Php on line 377 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/vodorod.php on line 377 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 377

МИНСКИЙ КОЛЛЕДЖ ТЕХНОЛОГИИ И ДИЗАЙНА ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

Реферат

по дисциплине: Химия

Тема: «Водород и его соединения»

Подготовила: учащаяся Iкурса343 группы

Вискуп Елена

Проверил: Алябьева Н.В.

Минск 2009

Строение атома водорода в периодической системе

Степени окисления

Распространенность в природе

Водород как простое вещество

Соединения водорода

Список литературы


Строение атома водорода в периодической системе

Первый элемент периодической системы (1-й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе, поэтому в таблицах условно помещается в IА группу и/или VIIA-группу.

Атом водорода наименьший по размерам и самый легкий среди атомов всех элементов. Электронная формула атома 1s 1 . Обычная форма существования элемента в свободном состоянии - двухатомная молекула.

Степени окисления

Атом водорода в соединениях с более электроотрицательными элементами проявляет степень окисления +1, например HF, H 2 O и др. А в соединениях с металлами-гидридах - степень окисления атома водорода равна -1, например NaH, CaH 2 и др. Обладает значением электроотрицательности средним между типичными металлами и неметаллами. Способен каталитически восстанавливать в органических растворителях, таких как уксусная кислота или спирт, многие органические соединения: ненасыщенные соединения до насыщенных, некоторые соединения натрия-до аммиака или аминов.

Распространенность в природе

Природный водород состоит из двух стабильных изотопов - протия 1 Н, дейтерия 2 Н и трития 3 Н. По-другому дейтерий обозначают как D, а тритий как Т. Возможны различные комбинации, например НТ, HD, TD, H 2 , D 2 , T 2 . Водород больше распространен в природе в виде различных соединений с серой (H 2 S), кислородом (в виде воды), углеродом, азотом и хлором. Реже в виде соединений с фосфором, йодом, бромом и другими элементами. Входит в состав всех растительных и животных организмов, нефти, ископаемых углей, природного газа, ряда минералов и пород. В свободном состоянии встречается очень редко в небольших количествах – в вулканических газах и продуктах разложения органических остатков. Водород является самым распространенным элементом во Вселенной (около 75%). Он входит в состав Солнца и большинства звезд, а также планет Юпитера и Сатурна, которые в основном состоят из водорода. На отдельных планетах водород может существовать в твердом виде.

Водород как простое вещество

Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Физические свойства - газ без цвета и запаха. Быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Обладает высокой теплопроводностью.

Химические свойства . В обычном состоянии при низких температурах малоактивен, без нагревания реагирует с фтором и хлором (при наличии света).

H 2 + F 2 2HF H 2 +Cl 2 hv 2HCl

С неметаллами взаимодействует активнее, чем с металлами.

При взаимодействии с различными веществами может проявлять как окислительные, так и восстановительные свойства.


Соединения водорода

Одним из соединений водорода являются галогены. Они образуются при соединении водорода с элементами VIIA группы. HF, HCl, HBr и HIпредставляют собой бесцветные газы, хорошо растворимые в воде.

Cl 2 + H 2 OHClO + HCl; HClO-хлорная вода

Так как HBr и HI типичные восстановители, то их нельзя получить по обменной реакции как HCl.

CaF 2 + H 2 SO 4 = CaSO 4 + 2HF

Вода - самое распространенное в природе соединение водорода.

2Н 2 + О 2 = 2Н 2 О

Не имеет ни цвета, ни вкуса, ни запаха. Очень слабый электролит, но активно реагирует со многими металлами и неметаллами, основными и кислотными оксидами.

2Н 2 О+2Na = 2NaOH + H 2

Н 2 О + BaO = Ba(OH) 2

3Н 2 О + P 2 O 5 = 2H 3 PO 4

Тяжелая вода (D 2 O) – изотопная разновидность воды. Растворимость веществ в тяжелой воде значительно меньше чем в обычной. Тяжелая вода ядовита, так как замедляет биологические процессы в живых организмах. Накапливается в остатке электролиза при многоразовом электролизе воды. Используется как теплоноситель и замедлитель нейтронов в ядерных реакторах.

Гидриды – взаимодействие водорода с металлами (при высокой температуре)или менее электроотрицательными чем водород неметаллами.

Si + 2H 2 =SiH 4

Сам же водород был открыт в первой половине 16в. Парацельсом. В 1776 Г. Кавендиш впервые исследовал его свойства, в 1783-1787 А. Лавуазье показал, что водород входит в состав воды, включил его в список химических элементов и предложил название «гидроген».


Список литературы

1. М.Б. Волович, О.Ф. Кабардин, Р.А. Лидин, Л.Ю. Аликберова, В.С. Рохлов, В.Б. Пятунин, Ю.А. Симагин, С.В Симонович/Справочник школьника/Москва «АСТ-ПРЕСС КНИГА» 2003.

2. И.Л. Кнуняц /Химическая энциклопедия/Москва «Советская энциклопедия»1988

3. И.Е. Шиманович /Химия 11/Минск «Народная асвета»2008

4. Ф.Коттон, Дж. Уилкинсон/Современная неорганическая химия/ Москва «Мир» 1969

Существуют три изотопные формы водорода: протий дейтерий и тритий разд. 1.1 и 4.1). В природном водороде содержится 99,985% изотопа , остальные 0,015% приходятся на долю дейтерия. Тритий представляет собой неустойчивый радиоактивный изотоп и поэтому встречается лишь в виде следов. Он испускает Р-частицы и имеет период полураспада 12,3 года (см. разд. 1.3).

Все изотопные формы водорода обладают практически одинаковыми химическими свойствами. Однако они различаются по физическим свойствам. В табл. 12.4 указаны некоторые физические свойства водорода и дейтерия.

Таблица 12.4. Физические свойства

Для каждого соединения водорода существует его дейтериевый аналог. Важнейшим из них является оксид дейтерия так называемая тяжелая вода. Она используется в качестве замедлителя в ядерных реакторах некоторых типов (см. разд. 1.3).

Оксид дейтерия получают электролизом воды. По мере того как на катоде происходит выделение остающаяся вода обогащается оксидом дейтерия. В среднем этот метод позволяет получать из 100 л воды .

Другие соединения дейтерия обычно получают из оксида дейтерия, например

Атомарный водород

Водород, получаемый описанными выше лабораторными методами, во всех случаях представляет собой газ, состоящий из двухатомных молекул , т. е. молекулярный водород. Его можно диссоциировать на агомы, используя какой-либо источник высокой энергии, например газоразрядную трубку, содержащую водород при низком давлении. Водород можно также атомизировать в электрической дуге, образуемой между вольфрамовыми электродами. Атомы водорода рекомбинируют на поверхности металла, и при этом выделяется столь большая энергия, что это приводит к

повышению температуры приблизительно до 3500°С. Этот эффект используется для водородно-дуговой сварки металлов.

Атомарный водород - сильный восстановитель. Он восстанавливает оксиды и хлориды металлов до свободных металлов.

Водород в момент выделения

Газообразный водород, т. е. молекулярный водород, является плохим восстановителем. Это обусловлено его большой энергией связи, равной Например, при пропускании газообразного водорода через раствор, содержащий ионы их восстановления не происходит. Однако, если образование водорода происходит непосредственно в растворе, содержащем ионы эти ионы немедленно восстанавливаются в ионы

Для того чтобы водород образовывался непосредственно в растворе, содержащем ионы туда добавляют разбавленную серную кислоту и цинк. Водород, образующийся в таких условиях, называют водород в момент выделения

Ортоводород и параводород

Два протона в молекуле водорода связаны между собой двумя , находящимися на -связывающей орбитали (см. разд. 2.1). Эти два электрона, находящиеся на указанной орбитали, должны иметь противоположно направленные спины. Однако в отличие от электронов два протона в молекуле водорода могут иметь либо параллельные, либо противоположно направленные спины. Разновидность молекулярного водорода с параллельными спинами протонов двух ядер называется ортоводородом, а разновидность с противоположно направленными спинами протонов двух ядер - параводородом (рис. 12.1).

Обычный водород представляет собой смесь ортоводорода и параводорода. При очень низких температурах в нем преобладает параводород. По мере повышения температуры доля ортоводорода возрастает, и при 25°С смесь содержит приблизительно 75% ортоводорода и 25% параводорода.

Параводород можно получать, пропуская обычный водород через трубку, наполненную древесным углем, а затем охлаждая его до температуры жидкого воздуха. Ортоводород и параводород совершенно одинаковы по своим химическим свойствам, но несколько различаются по температурам плавления и кипения (см. табл. 12.5).

Рис. 12.1. Ортоводород и параводород.

Таблица 12.5. Температуры плавления и кипения ортоводорода и параводорода

Более устойчив и может обнаруживаться в газоразрядной трубке. Анион водорода, или гидрид-ион содержится в гидридах металлов I группы и в гидридах ниже). Он представляет собой протон, окруженный двумя электронами, которые находятся на .

ОПРЕДЕЛЕНИЕ

Водород – первый элемент Периодической системы химических элементов Д.И. Менделеева. Символ – Н.

Атомная масса – 1 а.е.м. Молекула водорода двухатомна – Н 2 .

Электронная конфигурация атома водорода – 1s 1 . Водород относится к семейству s-элементов. В своих соединениях проявляет степени окисления -1, 0, +1. Природный водород состоит из двух стабильных изотопов – протия 1 Н (99,98%) и дейтерия 2 Н (D) (0,015%) – и радиоактивного изотопа трития 3 Н (Т) (следовые количества, период полураспада – 12,5 лет).

Химические свойства водорода

При обычных условиях молекулярный водород проявляет сравнительно низкую реакционную способность, что объясняется высокой прочностью связей в молекуле. При нагревании вступает во взаимодействие практически со всеми простыми веществами, образованными элементами главных подгрупп (кроме благородных газов, B, Si, P, Al). В химических реакциях может выступать как в роли восстановителя (чаще), так и окислителя (реже).

Водород проявляет свойства восстановителя (Н 2 0 -2е → 2Н +) в следующих реакциях:

1. Реакции взаимодействия с простыми веществами – неметаллами. Водород реагирует с галогенами , причем, реакция взаимодействия со фтором при обычных условиях, в темноте, со взрывом, с хлором – при освещении (или УФ-облучении) по цепному механизму, с бромом и йодом только при нагревании; кислородом (смесь кислорода и водорода в объемном отношении 2:1 называют «гремучим газом»), серой , азотом и углеродом :

H 2 + Hal 2 = 2HHal;

2H 2 + O 2 = 2H 2 O + Q (t);

H 2 + S = H 2 S (t = 150 – 300C);

3H 2 + N 2 ↔ 2NH 3 (t = 500C, p, kat = Fe, Pt);

2H 2 + C ↔ CH 4 (t, p, kat).

2. Реакции взаимодействия со сложными веществами. Водород реагирует с оксидами малоактивных металлов , причем он способен восстанавливать только металлы, стоящие в ряду активности правее цинка:

CuO + H 2 = Cu + H 2 O (t);

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O (t);

WO 3 + 3H 2 = W + 3H 2 O (t).

Водород реагирует с оксидами неметаллов :

H 2 + CO 2 ↔ CO + H 2 O (t);

2H 2 + CO ↔ CH 3 OH (t = 300C, p = 250 – 300 атм., kat = ZnO, Cr 2 O 3).

Водород вступает в реакции гидрирования с органическими соединениями класса циклоалканов, алкенов, аренов, альдегидов и кетонов и др. Все эти реакции проводят при нагревании, под давлением, в качестве катализаторов используют платину или никель:

CH 2 = CH 2 + H 2 ↔ CH 3 -CH 3 ;

C 6 H 6 + 3H 2 ↔ C 6 H 12 ;

C 3 H 6 + H 2 ↔ C 3 H 8 ;

CH 3 CHO + H 2 ↔ CH 3 -CH 2 -OH;

CH 3 -CO-CH 3 + H 2 ↔ CH 3 -CH(OH)-CH 3 .

Водород в качестве окислителя (Н 2 +2е → 2Н —) выступает в реакциях взаимодействия со щелочными и щелочноземельными металлами. При этом образуются гидриды – кристаллические ионные соединения, в которых водород проявляет степень окисления -1.

2Na +H 2 ↔ 2NaH (t, p).

Ca + H 2 ↔ CaH 2 (t, p).

Физические свойства водорода

Водород – легкий бесцветный газ, без запаха, плотность при н.у. – 0,09 г/л, в 14,5 раз легче воздуха, t кип = -252,8С, t пл = — 259,2С. Водород плохо растворим в воде и органически растворителях, хорошо растворим в некоторых металлах: никеле, палладии, платине.

По данным современной космохимии водород является самым распространенным элементом Вселенной. Основная форма существования водорода в космическом пространстве – отдельные атомы. По распространенности на Земле водород занимает 9 место среди всех элементов. Основное количество водорода на Земле находится в связанном состоянии – в составе воды, нефти, природного газа, каменного угля и т.д. В виде простого вещества водород встречается редко – в составе вулканических газов.

Получение водорода

Различают лабораторные и промышленные способы получения водорода. К лабораторным способам относят взаимодействие металлов с кислотами (1), а также взаимодействие алюминия с водными растворами щелочей (2). Среди промышленных способов получения водорода большую роль играют электролиз водных растворов щелочей и солей (3) и конверсия метана (4):

Zn + 2HCl = ZnCl 2 + H 2 (1);

2Al + 2NaOH + 6H 2 O = 2Na +3 H 2 (2);

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH (3);

CH 4 + H 2 O ↔ CO + H 2 (4).

Примеры решения задач

ПРИМЕР 1

Задание При взаимодействии 23,8 г металлического олова с избытком соляной кислоты выделился водород, в количестве, достаточном, чтобы получить 12,8 г металлической меди Определите степень окисления олова в полученном соединении.
Решение Исходя из электронного строения атома олова (…5s 2 5p 2) можно сделать вывод, что для олова характерны две степени окисления — +2, +4. На основании этого составим уравнения возможных реакций:

Sn + 2HCl = H 2 + SnCl 2 (1);

Sn + 4HCl = 2H 2 + SnCl 4 (2);

CuO + H 2 = Cu + H 2 O (3).

Найдем количество вещества меди:

v(Cu) = m(Cu)/M(Cu) = 12,8/64 = 0,2 моль.

Согласно уравнению 3, количество вещества водорода:

v(H 2) = v(Cu) = 0,2 моль.

Зная массу олова, найдем его количество вещества:

v(Sn) = m(Sn)/M(Sn) = 23,8/119 = 0,2 моль.

Сравним количества вещества олова и водорода по уравнения 1 и 2 и по условию задачи:

v 1 (Sn): v 1 (H 2) = 1:1 (уравнение 1);

v 2 (Sn): v 2 (H 2) = 1:2 (уравнение 2);

v(Sn): v(H 2) = 0,2:0,2 = 1:1 (условие задачи).

Следовательно, олово взаимодействует с соляной кислотой по уравнению 1 и степень окисления олова равна +2.

Ответ Степень окисления олова равна +2.

ПРИМЕР 2

Задание Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?
Решение При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 (1),

который при нагревании восстанавливает оксид меди (II) до меди (2):

СuО + Н 2 = Cu + Н 2 О.

Найдем количества веществ в первой реакции:

m(р-ра НСl) = 18,7 . 1,07 = 20,0 г;

m(НСl) = 20,0 . 0,146 = 2,92 г;

v(НСl) = 2,92/36,5 = 0,08 моль;

v(Zn) = 2,0/65 = 0,031 моль.

Цинк находится в недостатке, поэтому количество выделившегося водорода равно:

v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку:

v(СuО) = 4,0/80 = 0,05 моль.

В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031×80 — 0,031×64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода составит:

4,0-0,5 = 3,5 г.

Ответ Масса твердой смеси СuО с Сu равна 3,5 г.

Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

Физические свойства водорода

В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

Рис. 1. А. Лавуазье.

У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

Рис. 2. Формула водорода.

В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

Таблица «Физические свойства водорода»

Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

Получение водорода

Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

  • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
  • конверсия метана водяным паром при температуре 900 градусов:

CH 4 +2H 2 O=CO 2 +4H 2

Рис. 3. Паровая конверсия метана.

  • разложение метана в присутствии катализатора (Ni) при температуре 400 градусов: