Математические модели в биологии. Специфика математического моделирования живых систем

На протяжении длительного периода времени биология была описательной наукой, мало приспособленной для прогнозирования наблюдаемых явлений. С развитием компьютерных технологий ситуация изменилась. Сначала наиболее используемыми в биологии были методы математической статистики, которые позволяли выполнять корректную обработку данных экспериментов и оценивать определенную значимость для принятия определенных решений и получения выводов. Со временем, когда методы химии и физики вошли в биологию, начали использовать сложные математические модели, которые позволяли обрабатывать данные реальных экспериментов и предсказывать протекание биологических процессов в ходе виртуальных экспериментов.

Модели в биологии

Моделирование биологических систем представляет собой процесс создания моделей биологических систем с характерными для них свойствами. Объектом моделирования может быть любая из биологических систем.

В биологии применяется моделирование биологических структур, функций и процессов на молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом уровнях организации живых организмов. Применяется моделирование также к разным биологическим феноменам, условиям жизнедеятельности отдельных особей, популяций, экосистем.

Определение 1

Биологические системы – это очень сложные структурно-функциональные единицы.

Используется компьютерное и наглядное моделирование биологических компонентов. Примеров таких биологических моделей огромное количество. Приведем некоторые примеры биологических моделей:

Наблюдается быстро возрастающее значение моделей компьютерного моделирования почти во всех областях биологии. Компьютерное моделирование используется для анализа расчетных данных, к которому относится и обработка изображений, для анализа нуклеотидных последовательностей, кодирующих ген и отдельных белков, для компьютерного обучения современной биологии и т.д. При помощи проведения «виртуальных» экспериментов на персональных компьютерах можно контролировать все переменные и факторы воздействия, что позволяет выполнять анализ биологических систем, разработку физических моделей для компонентов этих систем, которые нельзя провести в реальных экспериментах.

Основные виды моделей в биологии

Биологические модели на лабораторных животных воспроизводят определенные состояния или заболевания, которые встречаются у животных или человека. Их использование позволяет изучать при проведении экспериментов механизмы возникновения данного состояния или заболевания, его протекание и исход, воздействовать на его протекание. Примерами биологических моделей являются искусственно вызванные генетические нарушения, инфекционный процесс, интоксикация, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункция или гипофункция некоторых органов, неврозы и эмоциональные состояния.

Для создания биологических моделей воздействуют на генетический аппарат, применяется заражение микробами, вводят токсины, удаляют отдельные органы и т.д. Физико-химические модели воспроизводят с помощью химических или физических средств биологические структуры, функции или процессы и, обычно, они представляют собой далекое подобие биологического явления, которое моделируется.

Значительные успехи были достигнуты в создании моделей физико-химических условий существования живых организмов, их органов и клеток. Например, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), которые имитируют внутреннюю среду организма и поддерживают существование изолированных органов или культивируемых клеток внутри организма.

Замечание 1

Моделирование биологических мембран позволяет выполнять исследование физико-химических основ процессов транспортировки ионов и влияния на него разных факторов. С помощью химических реакций, которые протекают в растворах в автоколебательном режиме, моделируются характерные для многих биологических феноменов колебательные процессы.

Математические модели (описание структуры, связей и закономерностей функционирования живых систем) построены на основе данных эксперимента или представляют собой формализованное описание гипотезы, теории или открытой закономерности какого-либо биологического феномена и для них необходима дальнейшая опытная проверка. Разные варианты таких экспериментов определяют границы использования математических моделей и представляют материал для ее дальнейшего корректирования. Испытание математической модели биологического явления на персональном компьютере дает возможность предвидеть характер изменения исследуемого биологического процесса в условиях, которые трудно воспроизвести с помощью эксперимента.

Математические модели дают возможность предсказать в отдельных случаях некоторые явления, которые были ранее неизвестны исследователю. Например, модель сердечной деятельности, которую предложили голландские ученые ван дер Пол и ван дер Марк, основанная на теории релаксационных колебаний, показала возможность особого нарушения сердечного ритма, которое впоследствии обнаружили у человека. Математической моделью физиологических явлений является также модель возбуждения нервного волокна, которая была разработана английскими учеными А. Ходжкином и А. Хаксли. Существуют логико-математические модели взаимодействия нейронов, построенные на основе теории нервных сетей, которые были разработаны американскими учеными У. Мак-Каллоком и У. Питсом.

Мы будем рассматривать в данном разделе аналитические модели. В аналитических моделях вход. и выход. Параметры связаны явными выражениями: уравнениями, неравенствами и т.д. Если мы решаем системы уравнений Колмогорова-Эрланга, это аналитическое моделирование, если же мы останавливаемся на графовой модели и проводим статистический эксперимент, определяем как обслуживает система поток заявок, то это имитационное моделирование. Для решения аналитической модели обычно приходится применять численные методы решения задач, но некоторые модели дают и аналитическое решение, т.к. для решения разных математических задач используются разные методы, иногда аналитические модели делят по методам (интегральные, дифференциальные, линейные и т.д.), но обычно по сферам применения (физические, химические, биологические, педагогические, технические). Рассмотрим некоторые примеры аналитической мат. моделей, которые являются наиболее простыми и в то же время классическими.

Математические модели в физике и технике

В физике моделирование в основном используется для описания процессов в производстве, связанных с решением дифференциальных уравнений и частных производных. Все другие модели, это обычно упрощенный вариант этих процессов. Основой для построения моделей являются следующими законами и уравнениями :

Часть уравнений записывается в одномерном виде или с помощью радиус-вектора

;

2. Модель колебательной системы

Рассмотрим ее от простого к сложному. В качестве примера могут служить очень многие окружающие на предметы, где важна вибрация (двигатели). Колебания свойственны и электрическим системам. Будем считать, что у нас одномерные колебания (вдоль одной оси).

Положение предмета определяется одной координатой х, уравнение будет
.

Решение этого диф. уравнения хорошо известно, оно представляет из себя

Колебания Гармонические со сдвигом фазы, незатухающие.

Усложняем модель - вводим затухание

(К- коэффициент затухания)

Если К мало (К<<1), то решение не будет сильно отличаться. Решение системы приводит к возникновению
.

К=0,1- затухание хорошо видно (переодич.). При увеличении К (
)- апериодическое затухание, когда нет ни одного периода.

Собственная частота
, частота внутри силы р . Когда частоты равны, получаем резкое увеличение амплитуды колебаний - резонанс, . Если резонанс производить при колебании, собственные колебания затухнут, останутся вынужденные с частотой вынужденной силы.

К<<1, W>>p.

Модуляция . Внутри собственные колебания, их амплитуда моделируется с частотой собственных колебаний (биения)

Если К<0, м.б. (т.к. она только мешает) – параметрический резонанс.

Пример : рессоры автомобиля (обычно полезны для раскачки колебаний).

Резонанс может быть отрицательным и положительным по значению. Излучение электромагнитных волн основано на резонансах, как обычных, так и параметрических. Излучение и прием электромагнитных волн резонансные. Параметрический резонанс выгоден тем, что гораздо мощнее обычного. Это удобное средство для генерации, например, СВЧ-колебаний (магнитофон). Для параметрического резонанса собственная частота не нужна, поэтому можно вкачивать энергию до самого разрушения этого резонатора. Но может быть и вред, разрушение, что неприятно.

Модуляция – основа радиосвязи. Есть несущая частота, которую модулируют, а потом де модулируют. Звук низкочастотен (36 КГц), а радиоволна распространяется на высокой частоте, значит, нужны мегагерцы. Есть амплитудная, фазовая и частотная модуляция. Эффект биений обычно вредный, мешающий – это источник шума. Иногда с помощью биений делают специальные шумовые генераторы.

Модель теплопроводности тонкого слоя

стекло (тонкое, длинное),
- температура будет равномерна, следовательно
.
гранич.
Обычно это уравнение не решается в явном виде, а с помощью клеточной аппроксимации. Решая эту систему уравнений, мы находим значения в узлах сетки. Подобным же способом моделируются другие задачи теплопроводности, электростатики и электродинамики. Основная проблема – сложность вычисления, поэтому требуются мощные ЭВМ.

Еще одна модель – движение тела, брошенного под углом к горизонту. Для ее решения используют так называемый метод стрельбы, он уже близок к имитационному моделированию.

Еще – модель движения ракеты:

- уравнение Циолковского.

Кинетические и структурные модели в химии

В химии в основном распространены модели химических реакций и строение модели хим. соединений. Для хим. реакций самое важное –кинетика, т.е. изменение течение реакций со временем, т.е. чем быстрее идет реакция, тем меньше остается реагирующего вещества, и наоборот. В начале ХХ века Адольф Лотка сформулировал модель кинетических реакций, которая была названа модель Вольтерра-Лотки. Цепочка превращений веществ:

Получена система диф. уравнений. Эти уравнения по смыслу похожи на уравнения Колмогорова- Эрланга. Это показывает, что то были тоже кинетические уравнения и все кинетические процессы похожи друг на друга.

В химии кинетические уравнения усложняются тем, что величины не являются постоянными, а зависят от таких величин как ,

химический состав веществ (температура подчиняется закону теплоемкости, р зависит от диффузии, которая определяется уравнением
- закон диффузии Фика. Похожее соотношение имеет и закон фильтрационного переноса Дарси). В результате приходится решать одновременно с кинетической еще и эти сложные уравнения.

В химии большое значение имеют структурные модели молекул: Н-О-Н, особенно удобна для органических веществ (у них очень сложная структура).

При изучении нового хим. вещества делают новый хим. анализ - определяют пропорции содержащие тех или иных веществ. Тогда можно определить из каких атомов состоит молекула, но и от того, как они соединены. Вводится валентная связь. Одни атомы имеют 1-ю валентную связь, другие 2-ю и т.д. Были обнаружены изомеры вещества с одинаковым количеством молекул, но с разными свойствами.

2 задачи:

    Определить внутреннюю структуру молекулы и связать ее структуру и хим. свойства, т.е. изучение изомеров.

    Проектирование изомеров - научиться создавать устойчивые структуры для молекул различных видов и давать их предположит. свойства.

Обе эти задачи стали настолько популярны в органической химии, что даже были созданы специальные системы моделирования молекул.

Математические модели в биологии

Биология чрезвычайно связана с химией и биохимией => структурное моделирование из химии перешло и в биологию. Биологические структуры – очень сложные химические структуры => появилась наука биохимия, которая изучает химию биологических структур. Здесь методы структурного моделирования оказались очень полезны. Наиболее известные задачи, связанные с моделированием генов.

Гены – молекулы, из которых формируется так называемые информационные компоненты живых существ-ДНК, РНК. В основном гены уже изучены и известны, но остались вопросы какие гены входят в ту или иную ДНК и как они связаны между собой. Т.к. даже в простейшем ДНК генов десятки тысяч, возник мировой проект «модель ДНК» , сначала у простейших существ, теперь человека (завершение) . Структурное моделирование- ведущее в биохимии.

Модели внутривидовой борьбы

Особи одного вида конкурируют между собой. В начале, когда особей мало, а условия благоприятные идет быстрый рост популяции, ограничения наступают из-за борьбы между особями одного вида. Самой первой простой моделью стала модель роста – модель безудержного роста. В этой модели отсутствует внутривидовая конкуренция, она будет модернизироваться.

Чем больше a , тем меньше рост, однако, и эта модель не могла описать некоторые явления, которые возникали в реальных экосистемах. В некоторых системах возникали колебания численности из года в год. Ввели еще один параметр, усложнили модель

Коэффициент b определяет нелинейную зависимость скорости роста R от численности. Численное изучение этой модели позволило обнаружить 4 характерные ситуации:

    Монотонный рост

    Ситуация затухающих колебаний

    Ситуация незатухающих колебаний

    Ситуация флуктуаций (случайных изменений)

Данные модели дискретные, но можно построить и непрерывную, кинетическую, ее уравнение:

. при этом r – некий аналог скорости. Эта двухпараметричная модель называется логистической кинетической моделью (модель Вольтера - Лоттки).

Модели межвидовой конкуренции

Если сосуществуют 2 вида, которые активно воздействуют друг на друга, то возникают процессы межвидовой конкуренции и борьбы. Наиболее известна модель (кинетическая) Вольтера - Лотки конкуренция двух видов:

Коэффициенты определяют связь между 2 видами. Если, то увеличение особей второго вида идет к уменьшению особей первого вида. Второй вид подавляет первый. Если, то особи второго вида не влияют. Очевидно, чем больше волков, тем меньше зайцев. В модели 6 параметров – ее изучение очень сложно, поэтому обычно фиксируют часть параметров. В общем случае изучение этой параметрической модели показало, что популяции хищников и жертв испытывают циклические изменения. В биологии очень часто используют так же имитационное моделирование.

Имитационное моделирование в биологии

Модель «жизнь»

В ней имитируется размножение простейших существ, задаются некоторые ограничения на размножение, гибель и т.д., а затем запускается эксперимент и прослеживается динамика со временем. Простейший вариант (школьный). Берем таблицу клеток пустых и заполненных (живых). Задаются правила, например если живая клетка окружена 4 и более живыми, то она погибает от перенаселения, если возле нее один или нет, погибает от одиночества. Если к мертвой примыкает 3 живые, она оживает. Эксперимент:

Задается начальная случайная конфигурация живых клеток

Задается количество моментов времени, которое будет прослежено

В цикле по моментам времени производят обновление таблицы по заданным правилам, и наблюдают за изменением картинки. Подобные системы изучались, и оказалось, что в такой таблице могут существовать устойчивые конфигурации, которые не разрушаются.

Модели в экономике

Экономические науки – одна из наиболее важных сфер применения моделирования, именно здесь модели дают наибольшую эффективность, например если оптимизировать в одной модели траты всего государства, эффект будет выражаться в миллиардах долларов. Можно выделить следующие типы моделей:

    Модель ЛП (линейные) – модель ресурсов, запасов и т.д.

    Модели, построенные на транспортной задаче (распространение и перевозка грузов)

    Модели целочисленного программирования (результат принадлежит области целых чисел, количество человек, число заводов и т.д.) – модели первого типа с целочисленными параметрами.

    Модели динамического программирования – в основном связанные с развитием какого-либо производства, фирмы и т.д.

    Игровые модели, связанные с противоборством, конкуренцией.

    Прогностические модели, связанные с прогнозом ситуации при недостатке информации или случайных событиях.

    Модели автоматического управления (сделать систему управления оптимальной)

    нелинейные модели решаются только в отдельных случаях.

34. Стохастическое моделирование. Метод Монте-Карло в моделировании. Генерирование случайных и псевдослучайных чисел. Методы и алгоритмы генерации. Генерирование случайных чисел распределенных по экспоненциальному, нормальному и произвольно заданному закону распределения.

Стохастическое программирование – раздел математического программирования, совокупность методов решения оптимизационных задач вероятностного характера. Это означает, что либо параметры ограничений (условий) задачи, либо параметры целевой функции, либо и те и другие являются случайными величинами (содержат случайные компоненты).

Оптимизационная задача - экономико-математическая задача, цель которой состоит в нахождении наилучшего распределения наличных ресурсов. Решается с помощью оптимальной модели методами математического программирования, т. е. путем поиска максимума или минимума некоторых функций при заданных ограничениях (условная оптимизация) и без ограничений (безусловная оптимизация). Решение оптимизационной задачи называется оптимальным решением, оптимальным планом, оптимальной точкой.

Случайные величины характеризуются средними значениями, дисперсией, корреляцией, регрессией, функция распределения и т.д.

Статистическое моделирование – моделирование с использованием случайных процессов и явлений.

Существует 2 варианта использования статистического моделирования:

– в стохастических моделях может существовать случайные параметры или взаимодействия. Связь между параметрами носит случайный или очень сложный характер.

– даже для детерминированных моделей могут использоваться статистические методы. Практически всегда используются статическое моделирование в имитационных моделях

Модели , где между параметрами существует однозначная связь и нет случайных параметров называются детерминированными .

Детерминированные процессы – определенные процессы, в которых всякие процессы определены законами.

Человек считает все процессы детерминированными, однако со временем обнаружены случайные процессы. Случайный процесс – это такой процесс, течение которого может быть различным в зависимости от случая, причем вероятность того или иного течения определена.

Исследование процессов показало, что они бывают 2-х типов:

а) Случайные по своей природе процессы;

б) Очень сложные детерминированные процессы;

Доказана центральная теорема, в соответствии с которой сложение различных процессов увеличивает случайный характер. Так, если сложить совершенно разные последовательности, не связанные между собой, то результат в пределе стремится к нормальному распределению. Но известно, что нормальное распределение – независимые события, следовательно, объединение детерминированных событий в пределе ведет к их случайности.

Т.о. в природе не существует совершенно чисто детерминированных процессов, всегда есть смесь детерминированных и случайных процессов. Действие случайного фактора называется “шумом”. Источники шума – сложные детерминированные процессы (броуновское движение молекул).

В имитационном моделировании часто сложные процессы заменяют случайными, следовательно, для того чтобы сделать имитационную модель, нужно научиться моделировать случайные процессы методами статического моделирования. Представляют случайные процессы в КМ последовательностью случайных чисел, величина которых случайно меняется.

В статистическом моделировании очень часто используется метод статистических испытаний Монте-Карло. Метод Монте-Карло – это численный метод решения математических задач при помощи моделирования случайных величин.

Суть метода : для того, чтобы определить постоянную или детерминированную характеристику процесса можно использовать статический эксперимент, параметры которого в пределе связаны с определяемой величиной. Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину
, математическое ожидание которой равно :
. Практически же поступают так: производят испытаний, в результате которых получают возможных значений
; вычисляют их среднее арифметическое
и принимают в качестве оценки (приближенного значения) искомого числа:
.

Рассмотрим суть метода на примерах его использования.

Современная биология широко применяет математические и компьютерные методы. Без использования математических методов было бы невозможным выполнение таких глобальных проектов, как геном человека, расшифровка пространственной структуры сложных биомакромолекул, дистанционная диагностика, компьютерное моделирование новых эффективных лекарств («драг- дизайн»), планирование мероприятий по предотвращению распространения эпидемий, анализ экологических последствий работы промышленных объектов, биотехнологические производства и многое другое.

Бурное внедрение математических методов в биологию в последние десятилетия связано в первую очередь с развитием экспериментальных физико-химических методов биологических исследований. Рентгеноструктурный и спектроскопические (ЯМР, ЭПР) методы, анализ последовательности ДНК невозможны без математической обработки результатов эксперимента.

С другой стороны, применение математических методов способствовало пониманию законов, лежащих в основе многих биологических процессов. Многочисленные примеры приведены в рекомендованной литературе. Среди них - свойства циклических колебаний численностей популяций, принцип конкурентного исключения Гаузе для конкурирующих видов, пороговая теорема в математической эпидемиологии, условия распространения нервного импульса, условия возникновения разного типа автоволновых процессов в активных тканях, в частности в сердечной мышце и многие другие.

Биологические задачи инициировали создание новых математических теорий, которые обогатили саму математику. Первая известная математическая модель численности популяции кроликов Леонардо из Пизы (13 век) представляет собой ряд Фибоначчи. Более поздние примеры новых математических постановок дают задачи рождения и гибели, диффузионные процессы, системы с кросс-диффузией в уравнениях с частными производными, новые типы краевых задач для уравнений переноса, эволюционная теория игр, системы репликаторных уравнений. Основы современной статистики были заложены Р. Фишером, который также изучал биологические проблемы.

Математические модели в биологии

Первые систематические исследования, посвященные математическим моделям в биологии, принадлежат А.Д. Лотке (1910-1920 гг). Его модели и сейчас не утратили значения. Основателем современной математической теории биологических популяций справедливо считается итальянский математик Вито Вольтерра , разработавший математическую теорию биологических сообществ, аппаратом которой служат дифференциальные и интегро- дифференциальные уравнения. (Vito Volterra. Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris, 1931). В последующие десятилетия популяционная динамика развивалась, в основном, в русле высказанных в этой книге идей. В.Вольтерра принадлежит самая знаменитая «биологическая модель» сосуществования видов типа (1928 г.), которая входит во все учебники по теории колебаний. Русский перевод книги Вольтерра вышел в 1976 г. под названием: «Математическая теория борьбы за существование» под редакцией и с послесловием Ю.М.Свирежева, где рассматривается история развития математической экологии в период 1931‑1976 гг. Начиная с сороковых годов 20 века, математические модели заняли прочное место в : работы Моно (1942), Новика и Сцилларда (1950) позволили описать закономерности роста популяций одноклеточных организмов.

Основополагающей для развития математических моделей пространственно-временного поведения биологических систем стала работа Алана Тьюринга, “ Химические основы морфогенеза” (Turing, 1952) заложившая основу динамического подхода к моделированию распределенных биологических систем. В ней впервые показана возможность существования в активной кинетической среде стационарных и неоднородных структур. Полученные в этой работе фундаментальные результаты легли в основу большого числа моделей морфогенеза, описывающих раскраску шкур животных (Murray 1993; Мюррей, 2009), образование раковин (Meinhardt 1995), морских звезд и других живых организмов.

Важную роль сыграли математические модели в изучении механизмов генерации нервного импульса . А. Ходжкин и Э. Хаксли наряду с экспериментальным исследованием предложили модель, описывающую процессы ионного транспорта через мембрану и прохождение импульса потенциала вдоль мембраны. Работа британских ученых была удостоена Нобелевской премии 1963 г. (вместе с сэром Джоном Эклсом, Австралия).

Объяснению механизма сердечных аритмий при помощи аксиоматических моделей возбудимой среды была посвящена первая в этой области работа Н. Винера и А. Розенблюта (Wiener and Rosenblueth 1946). Русский перевод опубликован в книге: Кибернетический сборник. Вып.3. М. ИЛ, 1961. В более общей форме сходные идеи были развиты советскими учеными Гельфандом и Цетлиным (Гельфанд и др., 1963; Гельфанд и др., 1966), а затем и другими авторами на моделях клеточных автоматов. При построении моделей учитывали, что процесс возникновения и распространения возбуждения в биологических объектах, в частности, в нервных тканях обладает рядом четко выраженных свойств, отправляясь от которых можно построить формальную модель этого явления.

Российские научные школы

Российские научные школы внесли большой вклад в развитие математической биологии. А.Н. Колмогоров , И.Г. Петровский , Н.С. Пискунов в 1937 г. в работе “Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме” решили задачу о предельной скорости перемещения фронта волны и определили предельную форму фронта. Эта работа стала классической и положила начало развитию теоретического и экспериментального изучения автоволновых явлений в системах разной природы.

Российским биофизикам В.И. Кринскому , Г.Р. Иваницкому и др. принадлежит серия блестящих работ, положивших начало экспериментальному изучению и теоретическому описанию возбудимых тканей (Иваницкий, Кринский, Сельков. «Математическая биофизика клетки». 1978). В настоящее время направление по изучению и компьютерному моделированию процессов нервного проведения и распространения волн в сердечной мышце интенсивно развивается. Последние достижения в этой области представлены в книге «Динамические модели процессов в клетках и субклеточных наноструктурах», 2010. Наиболее продвинутые модели учитывают сопряжение электрических и механо-химических процессов, структурную и геометрическую неоднородность сердца.

Российским ученым Б.П. Белоусовым (Белоусов 1959, 1981) был открыт класс химических реакций, позволяющих наблюдать на опыте практически все известные в настоящее время типы поведения распределенных систем. А.М. Жаботинский с сотрудниками подробно исследовали свойства этих реакций и условия их протекания, им также была предложена первая математическая модель наблюдаемого явления (Жаботинский, 1975). В дальнейшем реакцию Белоусова-Жаботинского (BZ-реакцию), как модель распределенной системы, демонстрирующей различные типы пространственно-временной организации, исследовали в сотнях лабораторий мира (Field. and Burger 1985; Филд and Бургер 1988; Ванаг, 2008). Был разработан ряд моделей для описания протекающих процессов, наиболее известными являются модель «Орегонатор», предложенная исследователями из университета Орегоны, США (Field., Koros et al. 1972; Field. and Noyes 1974), и модель «пущинатор», предложенная исследователями из Научного центра биологических исследований г. Пущино (Rovinsky and Zhabotinsky 1984).

Российские ученые внесли большой вклад в развитие математической теории . Это, в первую очередь, работы коллективов Института Математических проблем биологии РАН (до 1992 г. - Научный Вычислительный центр РАН) под руководством А.М.Молчанова (А.Д.Бызыкин, Ф.С.Березовская, А.И.Хибник) и коллектива сотрудников Вычислительного центра РАН под руководством Ю.М.Свирежева (Д.О. , А. Тарко, В. Разжевайкин, Д. Саранча, Н. В. Белотелов, В. Пасечник, В.В. Шакин и др.). В ВЦ РАН под руководством академика Н.Н.Моисеева в 70-80 годы 20 века проводились работы по глобальному и региональному моделированию. Здесь была создана знаменитая модель «ядерной зимы».

Значительный вклад в развитие методов моделирования процессов в энергопреобразующих мембранах внесли ученые МГУ. Кинетические модели первичных процессов фотосинтеза разработаны учеными Биологического (А.Б. Рубин , Г.Ю. Ризниченко , Н.Е. Беляева) и физического (А.К.Кукушкин, А.Н. Тихонов , В.А.Караваев, С.А. Кузнецова). В последние годы на кафедре биофизики Биологического факультета МГУ активно ведутся работы по разработке нового метода прямого многочастичного компьютерного моделирования процессов в субклеточных системах (А.Б.Рубин, Г.Ю.Ризниченко, И.Б. Коваленко. Д.М.Устинин)

Большую роль в становлении математической биологии России сыграли научные разработки и книги коллектива авторов Ю.М. Романовского , Н.В. Степановой (Физический факультет МГУ) и Д.С. Чернавского (ФИАН): « Математические модели в биофизике» М., 1976; « Математическая биофизика» М., 1984; « Математическое моделирование в биофизике. Введение в теоретическую биофизику » М-Ижевск, 2004. В них рассматриваются основы биологической кинетики, модели эволюции и развития в биологии, модели роста клеточных популяций, автоволны в распределенных кинетических системах, статистические аспекты биологической кинетики. Это направление продолжает развиваться в ФИАНе (А А. Полежаев, В.И. Волков и др.)

Учреждения, где проводятся работы по математическому моделированию в биологии

В современной России работы по математическому моделированию в биологии проводятся в ряде научно-исследовательских институтов и ВУЗов. Одно из ведущих мест принадлежит научному центру в г. Пущино, где в 1972 г. был организован научный вычислительный центр РАН (Директор - А.М. Молчанов), который в 1992 г. получил статус Института математических проблем биологии РАН. Нынешний директор ИМПБ - В.Д.Лахно, который также является председателем Научного Совета РАН по математической биологии и биоинформатике. ИМПБ РАН является ведущим научным учреждением по данной проблеме и издает электронный журнал «Математическая биология и биоинформатика»

Работы по математическому моделированию биологических процессов ведутся также в других учреждениях Пущинского научного центра РАН: Институте биофизики клетки РАН. директор - чл.-корр. РАН Е.Е.Фесенко (в основном по молекулярно-динамическому и квантово-механическому моделированию процессов в биомакромолекулах) и Институте теоретической и экспериментальной биофизики РАН, директор - чл.-корр. РАН Г.Р.Иваницкий (моделирование процессов самоорганизации в активных средах, автоволновны в живых клетках и биополимерах).

В научной школе академика Г. И Марчука активно развиваются методы моделирования применительно к медицине, в частности, разрабатываются модели иммунитета и распространения эпидемий.

Исследования биологических систем с использованием математических моделей проводятся в Институте биофизики СО РАН (Красноярск, Институте генетики СО РАН (Новосибирск), в университетах Нижнего Новгорода, Саратова, Ростова-на-Дону, Ярославля, в Государственном университете «Московский физико-технический институт», в Национальном исследовательском ядерном университете «МИФИ» и др.

Работы по математическому моделированию в биологии в МГУ активно ведутся на Биологическом факультете (модели первичных процессов фотосинтеза и других процессов в субклеточных и клеточных системах, молекулярная динамика белков и биомембран), Физическом факультете МГУ (модели молекулярных машин) , факультете Вычислительной математики и кибернетики (популяционная динамика, математическая экология, эволюционные модели, модели управления), Механико-математическом факультете (модели вестибулярного аппарата, модели растительных сообществ).

Периодические издания

Статьи по математическим моделям в биологии регулярно публикуются в журналах:

  • «Биофизика» (М., 1956 —),
  • «Bulletin of Mathematical Biophysics» (1939 —1972); «Bulletin of Mathematical Biology» (1972-); Jurnal of Theoretical biology (1961 —),
  • Journal of Mathematical biology (1974-);
  • Ecological modeling (1975—),
  • Компьютерные исследования и моделирование (2009 —).

Отдельные статьи по математическому моделированию также печатаются в журналах:

  • Успехи физических наук (1918 -)
  • Вестник Московского университета
  • BioSystems (1967)
  • Journal of Biological Systems (1993)
  • Computational and Mathematical Methods in Medicine (1997)
  • Mathematical Biosciences (1967)
  • Mathematical Biosciences and Engineering
  • PNAS (1915)
  • Science Magazine (1880)
  • Journal Nature (1869)
  • Acta Biotheoretica (1935)
  • Comments on Theoretical Biology
  • Rivista de Biologia / Biology Forum (1996)
  • Systema Naturae / Annali di Biologia Teorica (1998)
  • Theoretical and Applied Genetics (1929)
  • Theoretical Medicine and Bioethics (1980)
  • Theoretical Population Biology ()
  • Theory in Biosciences / Theorie in den Biowissenschaften
  • Mathematical Modeling of Natural Phenomena (2006)

Издания

Книги по математическому моделированию в биологии публикуются издательством РХД-ИКИ в серии «Биофизика. Математическая биология», Наука, URSS и другими издательствами научной и образовательной литературы.

Иваницкий Г.Р., Кринской В.И., Сельков Е.Е. Математическая биофизика клетки. Наука, 1978

Мюррей Д. Математическая биология. Том 1. Введение. Изд. ИКИ-РХД, М-Ижевск, 2009

Мятлев В.Д., Панченко Л.А., Ризниченко Г.Ю., Терехин А.Т. Высшая математика и ее приложения к биологии. Теория вероятностей и математическая статистика. Математические модели. Академия. М., 2009

Ризниченко Г.Ю. Лекции по математическим моделям в биологии. Изд. РХД, М-Ижевск, 2003 .

Ризниченко Г.Ю., Рубин А.Б. Биофизическая динамика продукционных процессов. Изд. ИКИ-РХД, М-Ижевск, 2004

Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическое моделирование в биофизике. Изд. ИКИ-РХД, 2004

Рубин А.Б. Биофизика. Т. I. М., 2004. Т. 2. М., 2004 (изд. 3-е)

Свирежев Ю.М., Логофет Д.О. Устойчивость биологических сообществ. М., Наука. 1978

Свирежев Ю.М. Нелинейные волны. Диссипативные структуры и катастрофы в экологии. М., Наука, 1987

Смирнова О.А. радиация и организм млекопитающих: модельный подход. Изд. РХД, М-Ижевск, 2006

В настоящем учебном пособии хорошо представлены основные современные математические модели для анализа биофизических процессов, живых систем в экологии. Книга состоит из трех разделов, в которых описаны базовые модели в биофизике, динамике популяций и экологии, а также даны соответствующие описательные примеры, представлены методы расчета и статистические данные. На данный момент некоторые из приводимых статистических данных устарели. Однако это существенно не влияет на процесс обучения математическому моделированию биологических процессов, и произошедшие изменения при необходимости могут быть учтены преподавателями.

Шаг 1. Выбирайте книги в каталоге и нажимаете кнопку «Купить»;

Шаг 2. Переходите в раздел «Корзина»;

Шаг 3. Укажите необходимое количество, заполните данные в блоках Получатель и Доставка;

Шаг 4. Нажимаете кнопку «Перейти к оплате».

На данный момент приобрести печатные книги, электронные доступы или книги в подарок библиотеке на сайте ЭБС возможно только по стопроцентной предварительной оплате. После оплаты Вам будет предоставлен доступ к полному тексту учебника в рамках Электронной библиотеки или мы начинаем готовить для Вас заказ в типографии.

Внимание! Просим не менять способ оплаты по заказам. Если Вы уже выбрали какой-либо способ оплаты и не удалось совершить платеж, необходимо переоформить заказ заново и оплатить его другим удобным способом.

Оплатить заказ можно одним из предложенных способов:

  1. Безналичный способ:
    • Банковская карта: необходимо заполнить все поля формы. Некоторые банки просят подтвердить оплату – для этого на Ваш номер телефона придет смс-код.
    • Онлайн-банкинг: банки, сотрудничающие с платежным сервисом, предложат свою форму для заполнения. Просим корректно ввести данные во все поля.
      Например, для " class="text-primary">Сбербанк Онлайн требуются номер мобильного телефона и электронная почта. Для " class="text-primary">Альфа-банка потребуются логин в сервисе Альфа-Клик и электронная почта.
    • Электронный кошелек: если у Вас есть Яндекс-кошелек или Qiwi Wallet, Вы можете оплатить заказ через них. Для этого выберите соответствующий способ оплаты и заполните предложенные поля, затем система перенаправит Вас на страницу для подтверждения выставленного счета.
  2. Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

    • 1. Сложные системы. Все биологические системы являются сложными многокомпонентными, пространственно-структурированными, их элементы обладают индивидуальностью. При моделировании таких систем возможны два подхода. Первый - агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций. Другой подход - подробное рассмотрение элементов системы и их взаимодействий, построение имитационной модели, параметры которой имеют ясный физический и биологический смысл. Такая модель не допускает аналитического исследования, но при хорошей экспериментальной изученности фрагментов системы может дать количественный прогноз се поведения при различных внешних воздействиях.
    • 2. Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста (в нелимитированных условиях - экспоненциального), возможность неустойчивости стационарного состояния в локальных системах (необходимое условие возникновения колебательных и квазистохастических режимов) и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах (условие неоднородных в пространстве распределений и автоволновых режимов). Важную роль в развитии сложных пространственно-временных режимов играют процессы взаимодействия компонентов (биохимические реакции) и процессы переноса, как хаотического (диффузия), так и связанного с направлением внешних сил (гравитация, электромагнитные поля) или с адаптивными функциями живых организмов (например, движение цитоплазмы в клетках под действием микрофиламептов).
    • 3. Открытые системы, постоянно пропускающие через себя потоки вещества и энергии. Биологические системы далеки от термодинамического равновесия и потому описываются нелинейными уравнениями. Линейные соотношения Онзагера, связывающие силы и потоки, справедливы только вблизи термодинамического равновесия.
    • 4. Биологические объекты имеют сложную многоуровневую систему регуляции. В биохимической кинетике это выражается в наличии в схемах петель обратной связи, как положительной, так и отрицательной. В уравнениях локальных взаимодействий обратные связи описываются нелинейными функциями, характер которых определяет возможность возникновения и свойства сложных кинетических режимов, в том числе колебательных и квазистохастических. Такого типа нелинейности при учете пространственного распределения и процессов переноса обусловливают паттерны стационарных структур (пятна различной формы, периодические диссипативные структуры) и типы автоволнового поведения (движущиеся фронты, бегущие волны, ведущие центры, спиральные волны и др.).
    • 5. Живые системы имеют сложную пространственную структуру. Живая клетка и содержащиеся в ней органеллы имеют мембраны, любой живой организм содержит огромное количество мембран, общая площадь которых составляет десятки гектаров. Естественно, что среду внутри живых систем нельзя рассматривать как гомогенную. Само возникновение такой пространственной структуры и законы ее формирования представляют одну из задач теоретической биологии. Один из подходов решения такой задачи - математическая теория морфогенеза.

    Мембраны не только выделяют различные реакционные объемы живых клеток, отделяют живое от неживого (среды). Они играют ключевую роль в метаболизме, селективно пропуская потоки неорганических ионов и органических молекул. В мембранах хлоропластов осуществляются первичные процессы фотосинтеза - запасание энергии света в виде энергии высокоэнергетических химических соединений, используемых в дальнейшем для синтеза органического вещества и других внутриклеточных процессов. В мембранах митохондрий сосредоточены ключевые стадии процесса дыхания, мембраны нервных клеток определяют их способность к нервной проводимости. Математические модели процессов в биологических мембранах составляют существенную часть математической биофизики.

    Существующие модели в основном представляют собой системы дифференциальных уравнений. Однако очевидно, что непрерывные модели не способны описать в деталях процессы, происходящие в столь индивидуальных и структурированных сложных системах, каковыми являются живые системы. В связи с развитием вычислительных, графических и интеллектуальных возможностей компьютеров все большую роль в математической биофизике играют имитационные модели, построенные па основе дискретной математики, в том числе модели клеточных автоматов.

    6. Имитационные модели конкретных сложных живых систем, как правило, максимально учитывают имеющуюся информацию об объекте. Имитационные модели применяются для описания объектов различного уровня организации живой материи - от биомакромолскул до моделей биогеоценозов. В последнем случае модели должны включать блоки, описывающие как живые, так и «косные» компоненты. Классическим примером имитационных моделей являются модели молекулярной динамики, в которых задаются координаты и импульсы всех атомов, составляющих биомакромолекулу, и законы их взаимодействия. Вычисляемая на компьютере картина «жизни» системы позволяет проследить, как физические законы проявляются в функционировании простейших биологических объектов - биомакромолекул и их окружения. Сходные модели, в которых элементами (кирпичиками) уже являются не атомы, а группы атомов, используются в современной технике компьютерного конструирования биотехнологических катализаторов и лекарственных препаратов, действующих на определенные активные группы мембран микроорганизмов, вирусов или выполняющих другие направленные действия.

    Имитационные модели созданы для описания физиологических процессов, происходящих в жизненно важных органах: нервном волокне, сердце, мозге, желудочно-кишечном тракте, кровеносном русле . Па них проигрываются «сценарии» процессов, протекающих в норме и при различных патологиях, исследуется влияние на процессы различных внешних воздействий, в том числе лекарственных препаратов. Имитационные модели широко используются для описания продукционного процесса растений и применяются для разработки оптимального режима выращивания растений с целью получения максимального урожая или получения наиболее равномерно распределенного во времени созревания плодов. Особенно важны такие разработки для дорогостоящего и энергоемкого тепличного хозяйства.