Уравнения максвелла для электромагнитного поля. Максвелла уравнения

Система уравнений Максвелла является обобщением основных законов об электрических и электромагнитных явлениях. Она описывает абсолютно все электромагнитные явления. Являясь основой теории электромагнитного поля, эта система уравнений позволяет решать задачи, связанные с отысканием электрических и магнитных полей, создаваемых заданным распределением электрических зарядов и токов. Уравнения Максвелла были отправной точкой для создания общей теории относительности Эйнштейна. В теории Максвелла раскрывается электромагнитная природа света. Уравнения сформулированы Дж. Максвеллом в шестидесятых годах 19 века на основе обобщения эмпирических законов и развития идей ученых, исследовавших электромагнитные явления до него (Законы Кулона, Био – Савара, Ампера и, в особенности, исследования Фарадея). Сам Максвелл записал 20 уравнений с 20 неизвестными в дифференциальной форме, которые позднее были преобразованы. Современная форма Максвелла дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом. Запишем уравнения используя систему единиц Гаусса.

Система уравнений Максвелла

В состав системы уравнений Максвелла входят четыре уравнения.

Первое уравнение:

Это Закон Фарадея (Закон электромагнитной индукции).

где -напряженность электрического поля, -вектор магнитной индукции, c – скорость света в вакууме.

Это уравнение говорит, о том, что ротор напряженности электрического поля равен потоку (т.е. скорости изменения во времени) вектора магнитной индукции сквозь этот контур.Уравнение (1.1) представляет собой первое уравнение Максвелла в дифференциальной форме.

Это же уравнение можно записать в интегральной форме, тогда оно примет следующий вид:

где – проекция на нормаль к площадке dS вектора магнитной индукции,

– магнитный поток.

рис. 2.

Циркуляция вектора напряженности электрического поля вдоль замкнутого контура L (ЭДС индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак минус по правилу Ленца означает направление индукционного тока.

Согласно Максвеллу закон электромагнитной индукции (а это именно он), справедлив для любого замкнутого контура, произвольно выбранного в переменном магнитном поле.

Смысл этого уравнения: Переменное магнитное поле в любой точке пространства создает вихревое электрическое поле.

где -вектор магнитной напряженности, - плотность электрического тока, - вектор электрического смещения.

Данное уравнение Максвелла является обобщением эмпирического закона Био-Савара о том, что магнитные поля возбуждаются электрическими токами. Смысл второго уравнения в том, что источником возникновения вихревого магнитного поля является также переменное электрическое поле, магнитное действие которого характеризуется током смещения. (-плотность тока смещения).

В интегральном виде второе уравнение Максвелла (Теорема о циркуляции магнитного поля) представлено следующим образом:

Циркуляция вектора напряжённости магнитного поля по произвольному контуру равна алгебраической сумме токов проводимости и тока смещения, сцепленных с контуром.

Когда Максвелл вводил уравнения (более ста лет тому назад!), природа электромагнитного поля была не понятна. В настоящее время природа поля выяснена, и стало ясно, что может быть названo «током» лишь формально. По pяду расчетных соображений такое название, не придавая ему прямого физического смысла, целесообразно сохранить, что в электротехнике и делается. По этой же причине вектор D, входящий в выражение для тока смещения, называют вектором электрического смещения.

Помимо первых двух уравнений в систему уравнений Максвелла входит теорема Гаусса-Остроградского для электрического и магнитного полей:

где -плотность электрического заряда.

Что в интегральном виде представляет собой следующее:

где -поток электрического смещения - поток магнитной индукции сквозь замкнутую поверхность, охватывающую свободный заряд q.

Смысл уравнения 3.2. Электрический заряд – источник электрической индукции.

Уравнение 4.2 выражает факт отсутствия свободных магнитных зарядов.

Полная система уравнений Максвелла в дифференциальном виде (характеризует поле в каждой точке пространства):

Полная система уравнений Максвелла в интегральном виде

Полная система уравнений Максвелла в интегральном виде (интегральная форма записи уравнений облегчает их физическую интерпретацию так ка делает их визуально ближе к известным эмпирическим законам):

Систему уравнений Максвелла дополняют «материальными уравнениями», связывающими векторы c величинами, описывающими электрические и магнитные свойства среды.

где – относительная диэлектрическая проницаемость, – относительная магнитная проницаемость, -удельная электропроводность, – электрическая постоянная, – магнитная постоянная. Среда предполагается изотропной, неферрромагнитной, несегнетоэлектрической.

На границе раздела двух сред выполняются граничные условия:

где - поверхностная плотность свободных зарядов, n- единичный вектор нормали к границе раздела, проведенный из среды 2 в 1, единичный вектор, касательный к границе, - проекция вектора плотности поверхностных токов проводимости на единичный вектор.

Данные уравнения выражают непрерывность нормальных составляющих вектора магнитной индукции и скачок нормальных составляющих вектора смещения. Непрерывность касательных составляющих вектора напряженностей электрического поля на границе раздела и скачок этих составляющих для напряженности магнитного поля.

Примеры решения задач

ПРИМЕР 1

Задание Из системы уравнений Максвелла получить уравнения непрерывности токов и закон сохранения заряда.
Решение Используем уравнение:

Проведем для него операцию дивергенции ( или ). Получим:

из системы уравнений Максвелла знаем, что , (c)

Подставим (с) в (b) получим:

отсюда следует

или в интегральной форме:

Соответственно для замкнутых изолированных областей получим:

Это уравнение непрерывности для тока, содержащее в себе закон сохранения заряда – один из фундаментальных принципов, который подтверждается экспериментом.

Введение Максвеллом понятия тока смещения, привело к завершению созданной им макроскопической теории электромагнитного поля, которая позволяет с единой точки зрения объяснить не только электрические и магнитные явления, но и предсказать новые, существования которых было впоследствии подтверждено.

В основе теории Максвелла лежат 4 уравнения:

1. Электрическое поле может быть как потенциальным, так и вихревым, поэтому напряженность результирующего поля равна:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля :

Получаем

Итак, полная система уравнений Максвелла в интегральной форме:

1),

2),

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует связь.

Для изотропных, несегнетоэлектрических и неферромагнитных сред запишем формулы связи:

б) ,

в) ,

где - электрическая постоянная, - магнитная постоянная,

Диэлектрическая проницаемость среды, m - магнитная проницаемость среды,

r - удельное электрическое сопротивление, - удельная электрическая проводимость.

Из уравнений Максвелла вытекает, что:

источником электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, которые могут возбуждаться либо движущимися электрическими зарядами (токами), либо переменными электрическими полями.

Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе не существует магнитных зарядов.

Если и (стационарные поля), то уравнения Максвелла принимают следующий вид:

Источниками электрического стационарного поля являются только электрические заряды, источниками стационарного магнитного поля - только токи проводимости.

Электрическое и магнитное поле в данном случае независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.

Дифференциальная форма записи уравнений Максвелла:

3) ,

Интегральная форма записи уравнений Максвелла является более общей, если имеются поверхности разрыва. Дифференциальная форма записи уравнения Максвелла предполагает, что все величины в пространстве и времени изменяются непрерывно.

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же важную роль, как и законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с переменным электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным полем, т.е. электрическое и магнитное поле неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

Свойства уравнений Максвелла

Уравнения Максвелла линейны. Они содержат только первые производные полей Е и В по времени и пространственным координатам и первые степени плотности электрических зарядов и токов j . Свойство линейности уравнений Максвелла связано с принципом суперпозиции, если два каких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей.

Уравнения Максвелла содержат уравнения непрерывности, выражающие закон сохранения электрического заряда. Чтобы получить уравнение непрерывности необходимо взять дивергенцию от обеих частей первого из уравнений Максвелла в дифференциальной форме записи:

Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистки инвариантными. Это есть следствие принципа относительности, согласно которому все инерциальные системы отсчета физически эквивалентны друг другу. Вид уравнений Максвелла при переходе от одной инерциальной системы отсчета к другой не меняется, однако входящие в них величины преобразуются по определенным правилам. Т.е. уравнения Максвелла являются правильными релятивистскими уравнениями в отличие, например, от уравнений механики Ньютона.

Уравнения Максвелла несимметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе электрические заряды существуют, а магнитные заряды нет.

Из уравнений Максвелла следует важный вывод о существовании принципиально нового явления: электромагнитное поле способно существовать самостоятельно – без электрических зарядов и токов. При этом изменение его имеет обязательно волновой характер. Поля такого рода называют электромагнитными волнами. В вакууме они всегда распространяются со скоростью равной скорости света. Теория Максвелла предсказала существование электромагнитных волн и позволила установить все их основные свойства.

Уравнения Максвелла — система дифференциальных уравнений, описывающих электромагнитное поле и его связь сэлектрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца образуют полную систему уравнений классической электродинамики . Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее, влияние не только на все области физики, непосредственно связанные с электромагнетизмом , но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).

Содержание [убрать] 1. История 2. Запись уравнений Максвелла и системы единиц 3. Дифференциальная форма 4. Интегральная форма 5. Сила Лоренца 6. Размерные константы в уравнениях Максвелла 7. Уравнения Максвелла в среде 7.1 Связанные заряды и токи 7.2 Материальные уравнения 7.3 Уравнения в изотропных и однородных средах без дисперсии o 7.4 Граничные условия 8. Законы сохранения 8.1 Уравнение непрерывности o 8.2 Закон сохранения энергии 9. Потенциалы 9.1 Скалярный и векторный потенциалы 9.2 Векторы Герца 9.3 Потенциалы Дебая 9.4 Векторы Римана — Зильберштейна 10. Ковариантная формулировка o 10.1 Четырёхмерные векторы 10.2 Тензор электромагнитного поля o 10.3 Лагранжиан 10.4 Запись при помощи дифференциальных форм 10.5 Общековариантная запись в компонентах 11. Спектральное представление 12. Уравнения без свободных зарядов и токов 12.1 Волновое уравнение 12.2 Уравнение Гельмгольца 13. Некоторые точные решения 13.1 Поле движущегося точечного заряда 13.2 Плоские электромагнитные волны 14. Связь с другими теориями 15. Аксиоматический подход 16. Единственность решений уравнений Максвелла 17. Численное решение уравнений Максвелла 18. Источники 19. Примечания 20. См. также 21. Литература 21.1 Исторические публикации 21.2 История развития 21.3 Общие курсы физики 21.4 Курсы теоретической физики 21.5 Решения уравнений Максвелла 22. Ссылки

История

Уравнения, сформулированные Джеймсом Клерком Максвеллом, возникли на основе ряда важных экспериментальных открытий, которые были сделаны в начале XIX века. В 1820 году Ганс Христиан Эрстед обнаружил, что пропускаемый через проводгальванический ток заставляет отклоняться магнитную стрелку компаса. Это открытие привлекло широкое внимание учёных того времени. В том же 1820 году Био и Савар экспериментально нашли выражение для порождаемой током магнитной индукции (закон Био-Савара ), и Андре Мари Ампер обнаружил, чтовзаимодействие на расстоянии возникает также между двумя проводниками, по которым пропускается ток. Ампер ввёл термин «электродинамический» и выдвинул гипотезу, что природный магнетизм связан с существованием в магните круговых токов.


Влияние тока на магнит, обнаруженное Эрстедом, привело Майкла Фарадея к идее о том, что должно существовать обратное влияние магнита на токи. После длительных экспериментов, в 1831 году, Фарадей открыл, что перемещающийся возле проводника магнит порождает в проводнике электрический ток. Это явление было названо электромагнитной индукцией. Фарадей ввёл понятие «поля сил» — некоторой среды, находящейся между зарядамии токами. Его рассуждения носили качественный характер, однако они оказали огромное влияние на исследования Максвелла.

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) неполны. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика, термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали догадки, что свет имеет электромагнитную природу, так что теория электромагнитных явлений тоже должна быть близкодейственной. Этот принцип стал существенной особенностью теории Максвелла.

В своём знаменитом «Трактате об электричестве и магнетизме» (1873) Максвелл писал:

"Приступая к изучению труда Фарадея, я установил, что его метод понимания явлений был так же математическим, хотя и не представленным в форме обычных математических символов. Я также нашёл, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков".

Заменяя фарадеевский термин «поле сил» на понятие «напряжённость поля», Максвелл сделал его ключевым объектом своей теории:

Если мы примем эту среду в качестве гипотезы, я считаю, что она должна занимать выдающееся место в наших исследованиях, и что нам следовало бы попытаться сконструировать рациональное представление о всех деталях её действия, что и было моей постоянной целью в этом трактате.

Подобная электродинамическая среда явилась абсолютно новым понятием для ньютоновской физики. Последняя изучала взаимодействие между собой материальных тел. Максвелл же записал уравнения, которым должна подчиняться среда, определяющая взаимодействие зарядов и токов и существующая даже в их отсутствие.

Электрический ток создаёт магнитную индукцию (закон Ампера )

Анализируя известные эксперименты, Максвелл получил систему уравнений для электрического и магнитного полей. В 1855 году в своей самой первой статье «О фарадеевых силовых линиях» («On Faraday’s Lines of Force») он впервые записал в дифференциальной форме систему уравнений электродинамики, но не вводя ещё ток смещения. Такая система уравнений описывала все известные к тому времени экспериментальные данные, но не позволяла связать между собой заряды и токи и предсказатьэлектромагнитные волны. Впервые ток смещения был введён Максвеллом в работе «О физических силовых линиях» («On Physical Lines of Force»), состоящей из четырёх частей и опубликованной в 1861-1862 годах.

Обобщая закон Ампера, Максвелл вводит ток смещения, вероятно, чтобы связать токи и заряды уравнением непрерывности, которое уже было известно для других физических величин. Следовательно, в этой статье фактически была завершена формулировка полной системы уравнений электродинамики. В статье 1864 года «Динамическая теория электромагнитного поля» («A dynamical theory of the electromagnetic field») рассмотрена сформулированная ранее система уравнений из 20 скалярных уравнений для 20 скалярных неизвестных. В этой статье Максвелл впервые сформулировал понятие электромагнитного поля как физической реальности, имеющей собственную энергию и конечное время распространения, определяющее запаздывающий характер электромагнитного взаимодействия.

Переменный поток магнитного поля создаёт электрическое поле (закон Фарадея )

Оказалось, что не только ток, но и изменяющееся со временем электрическое поле (ток смещения) порождаетмагнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света.

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её экспериментальную проверку. Однако опыты Герца однозначно подтвердили правоту Максвелла.

Максвелл не использовал векторных обозначений и записывал свои уравнения в достаточно громоздком компонентном виде. В своём трактате он, кроме того, частично использовалкватернионную формулировку. Современная форма уравнений Максвелла появилась около 1884 года после работ Хевисайда, Герца и Гиббса. Они не только переписали систему Максвелла в векторном виде, но и симметризовали её, переформулировав в терминах поля, избавившись отэлектрического и магнитного потенциалов, игравших в теории Максвелла существенную роль, поскольку полагали, что эти функции являются лишь ненужными вспомогательными математическими абстракциями. Интересно, что современная физика поддерживает Максвелла, но не разделяет негативное отношение его ранних последователей к потенциалам.Электромагнитный потенциал играет важную роль в квантовой физике и проявляется как физически измеряемая величина в некоторых экспериментах, например, в эффекте Ааронова-Бома.

Система уравнений в формулировке Герца и Хевисайда некоторое время называлась уравнениями Герца-Хевисайда. Эйнштейн в классической статье «К электродинамике движущихся тел» назвал их уравнениями Максвелла-Герца. Иногда в литературе встречается также название уравнения Максвелла-Хевисайда.

Уравнения Максвелла сыграли важную роль при возникновении специальной теории относительности (СТО). Джозеф Лармор (1900 год) и независимо от него Хенрик Лоренц (1904 год) нашли преобразования координат, времени и электромагнитных полей, которые оставляют уравнения Максвелла инвариантными при переходе от одной инерциальной системы отсчёта к другой. Эти преобразования отличались от преобразований Галилея классической механики и, следуя Анри Пуанкаре, стали называться преобразованиями Лоренца. Они стали математическим фундаментом специальной теории относительности.

Распространение электромагнитных волн со скоростью света первоначально интерпретировалось как возмущения некоторой среды, так называемого эфира. Были предприняты многочисленные попытки (см. исторический обзор) обнаружить движение Земли относительно эфира, однако они неизменно давали отрицательный результат. Поэтому Анри Пуанкаре высказал гипотезу о принципиальной невозможности обнаружить подобное движение (принцип относительности). Ему же принадлежит постулат о независимости скорости света от скорости его источника и вывод (вместе с Лоренцем), исходя из сформулированного так принципа относительности, точного видапреобразований Лоренца (при этом были показаны и групповые свойства этих преобразований).

Эти две гипотезы (постулата) легли и в основу статьи Альберта Эйнштейна (1905 год). С их помощью он также вывел преобразования Лоренца и утвердил их общефизический смысл, особо подчеркнув возможность их применения для перехода из любой инерциальной системы отсчета в любую другую инерциальную. Эта работа фактически ознаменовала собой построение специальной теории относительности. В СТО преобразования Лоренца отражают общие свойства пространства и времени, а модель эфира оказывается ненужной. Электромагнитные поля являются самостоятельными объектами, существующими наравне с материальными частицами.

Классическая электродинамика, основанная на уравнениях Максвелла, лежит в основе многочисленных приложений электро- и радиотехники, СВЧ и оптики. До настоящего времени не было обнаружено ни одного эффекта, который потребовал бы видоизменения уравнений. Они оказываются применимы и в квантовой механике, когда рассматривается движение, например, заряженных частиц во внешних электромагнитных полях. Поэтому уравнения Максвелла являются основой микроскопического описания электромагнитных свойств вещества.

Уравнения Максвелла востребованы также в астрофизике и космологии, поскольку многие планетыи звезды обладают магнитным полем. Магнитное поле определяет, в частности, свойства таких объектов, как пульсары и квазары.

На современном уровне понимания все фундаментальные частицы являются квантовыми возбуждениями («квантами») различных полей. Например, фотон — это квант электромагнитного поля, а электрон — квант спинорного поля. Поэтому полевой подход, предложенный Фарадеем и существенно развитый Максвеллом, является основой современной физики фундаментальных частиц, в том числе ее стандартной модели.

Исторически несколько раньше он сыграл важную роль в появлении квантовой механики в формулировке Шрёдингера и вообще открытии квантовых уравнений, описывающих движение частиц, в том числе и релятивистских (уравнение Клейна-Гордона, уравнение Дирака), хотя первоначально аналогия с уравнениями Максвелла здесь виделась скорее лишь в общей идее, тогда как впоследствии оказалось, что она может быть понята как более конкретная и детальная (как это описано выше).

Также полевой подход, в целом восходящий к Фарадею и Максвеллу, стал центральным в теории гравитации (включая ОТО).

Запись уравнений Максвелла и системы единиц

Запись большинства уравнений в физике не зависит от выбора системы единиц. Однако в электродинамике это не так. В зависимости от выбора системы единиц в уравнениях Максвелла возникают различные коэффициенты (константы). Международная система единиц СИ является стандартом в технике и преподавании, однако споры среди физиков о её достоинствах и недостатках по сравнению с конкурирующей симметричной гауссовой системой единиц (СГС) не утихают. Преимущество системы СГС в электродинамике состоит в том, что все поля в ней имеют одну размерность, а уравнения, по мнению многих учёных, записываются проще и естественней.

Поэтому СГС продолжает применяться в научных публикациях по электродинамике и в преподавании теоретической физики, например, в курсе теоретической физики Ландау и Лифшица . Однако для практических применений вводимые в СГС единицы измерений, многие из которых неименованы и неоднозначны, часто неудобны. Система СИ стандартизована и лучше самосогласованна, на этой системе построена вся современная метрология. Кроме того, система СИ обычно используется в курсах общей физики. В связи с этим все соотношения, если они по-разному записываются в системах СИ и СГС, далее приводятся в двух вариантах.

Дифференциальная форма

Уравнения Максвелла представляют собой в векторной записи систему из четырех уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных) линейных дифференциальных уравнений в частных производных 1-го порядка для 12 компонент четырёх векторных функций ():

Название СГС СИ Примерное словесное выражение
Закон Гаусса Электрический заряд является источником электрической индукции.
Закон Гаусса для магнитного поля Не существуетмагнитных зарядов. [~ 1]
Закон индукции Фарадея Изменение магнитной индукции порождает вихревое электрическое поле. [~ 1]
Теорема о циркуляции магнитного поля Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Жирным шрифтом в дальнейшем обозначаются векторные величины, курсивом — скалярные.

Введённые обозначения:

— плотность стороннего электрического заряда (в единицах СИ — Кл/м³);

— плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае - случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где — (средняя) скорость движения этих носителей в окрестности данной точки, ρ 1 - плотность заряда этого типа носителей (она в общем случае не совпадает с ρ); в общем случае это выражение надо усреднить по разным типам носителей;

— скорость света в вакууме (299 792 458 м/с);

— напряжённость электрического поля (в единицах СИ — В/м);

— напряжённость магнитного поля (в единицах СИ — А/м);

— электрическая индукция (в единицах СИ — Кл/м²);

— магнитная индукция (в единицах СИ — Тл = Вб/м² = кг.с −2 .А −1);

— дифференциальный оператор набла, при этом:

Означает ротор вектора,

Означает дивергенцию вектора.

Приведённые выше уравнения Максвелла не составляют ещё полной системы уравненийэлектромагнитного поля, поскольку они не содержат свойств среды, в которой возбужденоэлектромагнитное поле. Соотношения, связывающие величины , , , и и учитывающие индивидуальные свойства среды, называются материальными уравнениями.

Интегральная форма

При решении уравнений Максвелла распределения зарядов и токов часто считаются заданными. С учётом граничных условий и материальных уравнений это позволяет определить напряжённость электрического поля и магнитную индукцию , которые, в свою очередь, определяют силу, действующую на пробный заряд , двигающийся со скоростью .

Эта сила называется силой Лоренца :

СГС СИ

Электрическая составляющая силы направлена по электрическому полю (если ), а магнитная — перпендикулярна скорости заряда и магнитной индукции. Впервые выражение для силы, действующей на заряд в магнитном поле (электрическая компонента была известна), получил в 1889 году Хевисайд за три года до Хендрика Лоренца, который вывел выражение для этой силы в 1892 году.

В более сложных ситуациях в классической и квантовой физике в случае, когда под действием электромагнитных полей свободные заряды перемещаются и изменяют значения полей, необходимо решение самосогласованной системы из уравнений Максвелла и уравнений движения, включающих силы Лоренца. Получение точного аналитического решения такой полной системы сопряжено обычно с большими сложностями.

Размерные константы в уравнениях Максвелла

В гауссовой системе единиц СГС все поля имеют одинаковую размерность, и в уравнениях Максвелла фигурирует единственная фундаментальная константа , имеющая размерностьскорости, которая сейчас называется скоростью света (именно равенство этой константы скорости распространения света дало Максвеллу основания для гипотезы об электромагнитной природе света).

В системе единиц СИ, чтобы связать электрическую индукцию и напряжённость электрического поля в вакууме , вводится электрическая постоянная ε 0 (). Магнитная постоянная является таким же коэффициентом пропорциональности для магнитного поля в вакууме (). Названия электрическая постоянная и магнитная постоянная сейчас стандартизованы. Ранее для этих величин также использовались, соответственно, названия диэлектрическая и магнитная проницаемости вакуума.

Скорость электромагнитного излучения в вакууме (скорость света) в СИ появляется при выводеволнового уравнения:

В системе единиц СИ, в качестве точных размерных констант определены скорость света в вакууме и магнитная постоянная . Через них выражается электрическая постоянная ε 0 .

Принятые значения скорости света, электрической и магнитной постоянных приведены в таблице:

Иногда вводится величина, называемая «волновым сопротивлением», или «импедансом» вакуума:

Ом.

Приближённое значение для получается, если для скорости света принять значение м/c. В системе СГС . Эта величина имеет смысл отношения амплитуд напряжённостей электрического и магнитного полей плоской электромагнитной волны в вакууме.

Уравнения Максвелла в среде

Чтобы получить полную систему уравнений электродинамики, к системе уравнений Максвелла необходимо добавить материальные уравнения, связывающие величины , , , , , в которых учтены индивидуальные свойства среды. Способ получения материальных уравнений дают молекулярные теории поляризации, намагниченности и электропроводности среды, использующие идеализированные модели среды. Применяя к ним уравнения классической иликвантовой механики, а также методы статистической физики, можно установить связь между векторами , , с одной стороны и , с другой стороны.

Связанные заряды и токи

Слева : Совокупность микроскопических диполей в среде образуют один макроскопический дипольный момент и эквивалентны двум заряженным с противоположным знаком пластинам на границе. При этом внутри среды все заряды скомпенсированы;

Справа : Совокупность микроскопических циркулярных токов в среде эквивалентна макроскопическому току, циркулирующему вдоль границы. При этом внутри среды все токи скомпенсированы.

При приложении электрического поля кдиэлектрическому материалу каждая из его молекул превращается в микроскопическийдиполь. При этом положительные ядра атомов немного смещаются в направлении поля, а электронные оболочки в противоположном направлении. Кроме этого, молекулы некоторых веществ изначально имеют дипольный момент. Дипольные молекулы стремятся ориентироваться в направлении поля. Этот эффект называетсяполяризацией диэлектриков. Такое смещение связанных зарядов молекул в объёме эквивалентно появлению некоторого распределения зарядов на поверхности, хотя все молекулы, вовлечённые в процесс поляризации остаются нейтральными (см. рисунок).

Аналогичным образом происходит магнитная поляризация (намагнивание) в материалах, в которых составляющие их атомы и молекулы имеютмагнитные моменты, связанные со спином и орбитальным моментом ядер и электронов. Угловые моменты атомов можно представить в виде циркулярных токов. На границе материала совокупность таких микроскопических токов эквивалентна макроскопическим токам, циркулирующим вдоль поверхности, несмотря на то, что движение зарядов в отдельных магнитных диполях происходит лишь в микромасштабе (связанные токи).

Рассмотренные модели показывают, что хотя внешнее электромагнитное поле действует на отдельные атомы и молекулы, его поведение во многих случаях можно рассматривать упрощённым образом в макроскопическом масштабе, игнорируя детали микроскопической картины.

В среде сторонние электрические и магнитные поля вызывают поляризацию и намагничивание вещества, которые макроскопически описываются соответственно вектором поляризации ивектором намагниченности вещества, а вызваны появлением связанных зарядов и токов . В результате поле в среде оказывается суммой внешних полей и полей, вызванных связанными зарядами и токами.

Поэтому, выражая векторы и через , , и , можно получить математически эквивалентную систему уравнений Максвелла:

СГС СИ

Индексом здесь обозначены свободные заряды и токи. Уравнения Максвелла в такой форме являются фундаментальными, в том смысле, что они не зависят от модели электромагнитного устройства вещества. Разделение зарядов и токов на свободные и связанные позволяет «спрятать» в , , а затем в и, следовательно, в сложный микроскопический характер электромагнитного поля в среде.

Материальные уравнения

Материальные уравнения устанавливают связь между и . При этом учитываются индивидуальные свойства среды. На практике в материальных уравнениях обычно используются экспериментально определяемые коэффициенты (зависящие в общем случае от частоты электромагнитного поля), которые собраны в различных справочниках физических величин.

В слабых электромагнитных полях, сравнительно медленно меняющихся в пространстве и вовремени, в случае изотропных, неферромагнитных и несегнетоэлектрических сред справедливо приближение, в котором поляризуемость и намагниченность линейно зависят от приложенных полей:

СГС СИ

где введены безразмерные константы: — диэлектрическая восприимчивость и —магнитная восприимчивость вещества (в системе единиц СИ эти константы в раз больше, чем в гауссовой системе СГС). Соответственно, материальные уравнения для электрической и магнитной индукций записываются в следующем виде:

СГС СИ

где — относительная диэлектрическая проницаемость, — относительная магнитная проницаемость. Размерные величины ε 0 ε (в единицах СИ — Ф/м) и μ 0 μ (в единицах СИ — Гн/м), возникающие в системе СИ, называются абсолютная диэлектрическая проницаемость иабсолютная магнитная проницаемость соответственно.

В проводниках существует связь между плотностью тока и напряжённостью электрического поля, выражаемая законом Ома :

где — удельная проводимость среды (в единицах СИ — Ом −1 .м −1).

В анизотропной среде ε, и являются тензорами , и . В системе координат главных осей они могут быть описаны диагональными матрицами. В этом случае, связь между напряжённостями полей и индукциями имеют различные коэффициенты по каждой координате.

Например, в системе СИ:

Хотя для широкого класса веществ линейное приближение для слабых полей выполняется с хорошей точностью, в общем случае зависимость между и может быть нелинейной. В этом случае проницаемости среды не являются константами, а зависят от величины поля в данной точке. Кроме того, более сложная связь между и наблюдается в средах с пространственной или временной дисперсиями. В случае пространственной дисперсии токи и заряды в данной точке пространства зависят от величины поля не только в той же точке, но и в соседних точках. В случае временной дисперсии поляризация и намагниченность среды не определяются только величиной поля в данный момент времени, а зависят также от величины полей в предшествующие моменты времени. В самом общем случае нелинейных и неоднородных сред с дисперсией, материальные уравнения в системе СИ принимают интегральный вид:

Аналогичные уравнения получаются в гауссовой системе СГС (если формально положить ε 0 = 1).

Уравнения в изотропных и однородных средах без дисперсии

В изотропных и однородных средах без дисперсии уравнения Максвелла принимают следующий вид :

СГС СИ

В оптическом диапазоне частот вместо диэлектрической проницаемости ε используется показатель преломления (зависящий от длины волны), показывающий отличие скорости распространения монохроматической световой волны в среде от скорости света в вакууме. При этом в оптическом диапазоне диэлектрическая проницаемость обычно заметно меньше чем на низких частотах, а магнитная проницаемость большинства оптических сред практически равна единице. Показатель преломления большинства прозрачных материалов составляет от 1 до 2, достигая 5 у некоторых полупроводников. В вакууме и диэлектрическая, и магнитная проницаемости равны единице: ε = μ = 1.

Поскольку уравнения Максвелла в линейной среде являются линейными относительно полей и свободных зарядов и токов , справедлив принцип суперпозиции:

Если распределения зарядов и токов создают электромагнитное поле с компонентами , а другие распределения создают, соответственно, поле , то суммарное поле, создаваемое источниками , будет равно .

При распространении электромагнитных полей в линейной среде в отсутствие зарядов и токовсумма любых частных решений уравнений будет также удовлетворять уравнениям Максвелла.

Граничные условия

Во многих случаях неоднородную среду можно представить в виде совокупности кусочно-непрерывных однородных областей, разделённых бесконечно тонкими границами. При этом можно решать уравнения Максвелла в каждой области, «сшивая» на границах получающиеся решения. В частности, при рассмотрении решения в конечном объёме необходимо учитывать условия на границах объёма с окружающим бесконечным пространством. Граничные условия получаются из уравнений Максвелла предельным переходом. Для этого проще всего воспользоваться уравнениями Максвелла в интегральной форме.

Выбирая во второй паре уравнений контур интегрирования в виде прямоугольной рамки бесконечно малой высоты, пересекающей границу раздела двух сред, можно получить следующую связь между компонентами поля в двух областях, примыкающих к границе:

СГС СИ
, , , ,

где — единичный вектор нормали к поверхности, направленный из среды 1 в среду 2 и имеющий размерность, обратную длине, — плотность поверхностных свободных токов вдоль границы (то есть не включая связанных токов намагничивания, складывающихся на границе среды из микроскопических молекулярных итп токов). Первое граничное условие можно интерпретировать как непрерывность на границе областей тангенциальных компонент напряжённостей электрического поля (из второго следует, что тангенциальные компоненты напряжённости магнитного поля непрерывны только при отсутствии поверхностных токов на границе).

Ток смещения. Для обобщения уравнений электромагнитного поля в вакууме на переменные поля необходимо изменить только одно из написанных ранее уравнений (см. разд. 3.4, 3.12); три уравнения оказываются верными в общем случае. Однако закон полного тока для магнитного поля в случае переменных полей и токов оказывается неверным. В соответствии с этим законом ток должен быть одинаковым для любых двух натянутых на контур поверхностей; если заряд в объеме между выбранными поверхностями меняется, то это утверждение вступает в противоречие с законом сохранения заряда. Например, при зарядке конденсатора (рис. 45) ток через одну из указанных поверхностей равен а через другую (проходящую между пластинами) - нулю. Чтобы снять указанное противоречие, Максвелл ввел в это уравнение ток смещения, пропорциональный скорости изменения электрического поля:

В диэлектрической среде выражение для тока смещения принимает вид:

Первый член представляет собой плотность тока смещения в вакууме, второй - реальный ток, обусловленный движением связанных зарядов при изменении поляризованности. Ток смещения через поверхность равен где Ф - поток вектора через поверхность. Введение тока смещения снимает противоречие с законом сохранения заряда. Например, при зарядке плоского конденсатора ток смещения через поверхность, проходящую между пластинами, равен току по подводящим проводам.

Система уравнений Максвелла в вакууме. После введения тока смещения система уравнений Максвелла в дифференциальной форме принимает вид:

Система уравнений Максвелла в интегральной форме:

Приведем также запись уравнений Максвелла в дифференциальной форме в системе СГС:

Плотности заряда и тока связаны соотношением

выражающим закон сохранения заряда (это уравнение является следствием уравнений Максвелла).

Уравнения Максвелла в среде имеют вид: дифференциальная форма интегральная форма

и служат для определения четырех величин . К уравнениям Максвелла, в среде надо добавить материальные уравнения связи между , характеризующие электрические и магнитные свойства среды. Для изотропных линейных сред эти уравнения имеют вид:

Из уравнений Максвелла можно получить граничные условия для (см. разд. 3.6, 3.13).

Закон сохранения энергии для электромагнитного поля.

Из уравнений Максвелла можно вывести следующее уравнение для любого объема V, ограниченного поверхностью

Первый член описывает изменение энергии электромагнитного поля в рассматриваемом объеме. Видно, что в общем случае для плотности энергии электромагнитного поля оказываются верными формулы, полученные ранее для постоянного электрического и магнитного полей. Второй член представляет собой работу поля над частицами в рассматриваемом объеме. Наконец, третий член описывает поток электромагнитной энергии через ограничивающую объем замкнутую поверхность. Плотность потока энергии в данной точке пространства (вектор Пойнтинга) определяется векторами Е и В в этой же точке:

Последнее выражение справедливо и для плотности потока электромагнитной энергии в веществе. Плотность энергии в среде имеет вид:

Пример 1. Рассмотрим зарядку плоского конденсатора с круглыми пластинами, расположенными на расстоянии . Скорость изменения энергии в цилиндре радиусом (меньше размеров пластин) равна

Напряженность магнитного поля найдем из второго уравнения Максвелла: (справа стоит ток смещения). Получаем, что скорость притока энергии через боковую поверхность цилиндра: равна скорости изменения энергии в объеме.

Релятивистские свойства полей. При переходе из одной инерциальной системы отсчета в другую изменяются как источники электромагнитного поля (плотности заряда и тока), так и сами поля, но уравнения Максвелла сохраняют свой вид. Проще всего выглядят формулы преобразования для источников - плотность движущегося заряда). Если обозначить за плотность заряда в ИСО, в которой то с учетом сокращения продольных размеров (см. разд. 1.11) получим

Сравнивая с -вектором энергии-импульса, видим, что образуют -вектор, т.е. преобразуются друг через друга так же, как по формулам преобразования Лоренца. Зная, как преобразуются источники поля, можно найти формулы для преобразования Е, В. Они выглядят так:

Здесь - скорость системы отсчета К относительно системы К, преобразования записаны для компонент полей, параллельных и перпендикулярных Инвариантами этих преобразований являются скалярные величины

При с формулы преобразования полей принимают следующий упрощенный вид:

Пример 2. Магнитное поле нерелятивистской частицы. Рассмотрим частицу, которая движется относительно ИСО К с постоянной нерелятивистской скоростью V. В ИСО связанной с движущейся частицей, имеется только электрическое поле Для перехода в ИСО К надо записать формулы

преобразования Учитывая, что в нерелятивистском пределе длины отрезков не меняются, получим (для момента, когда частица проходи в К через начало координат):

При выводе этих формул было использовано равенство

Пример 3. Поляризация диэлектрика при движении в магнитном поле. При движении диэлектрика с нерелятивистской скоростью перпендикулярно линиям индукции магнитного поля происходит его поляризация. В ИСО, связанной с диэлектриком, существует поперечное электрическое поле . Характер поляризации диэлектрика зависит от его формы.

Пример 4. Электрическое поле релятивистской частицы. Рассмотрим частицу, которая движется относительно ИСО К с постоянной релятивистской скоростью V. В ИСО К связанной с движущейся частицей, имеется только электрическое поле Для перехода в ИСО К следует использовать формулы преобразования (92) с Запишем ответ для момента времени, когда частица в ИСО К проходит через начало координат, для точки, лежащей в плоскости При переходе от координат к координатам надо учесть, что (координаты точки измеряются в К одновременно с прохождением частицы через начало координат). В результате получим

Видно, что вектор Е коллинеарен вектору Однако на одном и том же расстоянии от заряда поле в точке, расположенной На линии его движения, меньше, чем в точке, расположенной на перпендикуляре к скорости. Магнитное поле в той же точке определяется выражением:

Отметим, что рассмотренное электрическое поле не является потенциальным.

Система уравнений Максвелла является обобщением основных законов об электрических и электромагнитных явлениях. Она описывает абсолютно все электромагнитные явления. Являясь основой теории электромагнитного поля, эта система уравнений позволяет решать задачи, связанные с отысканием электрических и магнитных полей, создаваемых заданным распределением электрических зарядов и токов. были отправной точкой для создания общей теории относительности Эйнштейна. В теории Максвелла раскрывается электромагнитная природа света. Уравнения сформулированы Дж. Максвеллом в шестидесятых годах 19 века на основе обобщения эмпирических законов и развития идей ученых, исследовавших электромагнитные явления до него (Законы Кулона, Био – Савара, Ампера и, в особенности, исследования Фарадея). Сам Максвелл записал 20 уравнений с 20 неизвестными в дифференциальной форме, которые позднее были преобразованы. Современная форма Максвелла дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом. Запишем уравнения используя систему единиц Гаусса.

Система уравнений Максвелла

В состав системы уравнений Максвелла входят четыре уравнения.

Первое уравнение:

Это Закон Фарадея (Закон электромагнитной индукции).

где -напряженность электрического поля, -вектор магнитной индукции, c – скорость света в вакууме.

Это уравнение говорит, о том, что ротор напряженности электрического поля равен потоку (т.е. скорости изменения во времени) вектора магнитной индукции сквозь этот контур.

Уравнение (1.1) представляет собой первое уравнение Максвелла в дифференциальной форме.

Это же уравнение можно записать в интегральной форме, тогда оно примет следующий вид:

где – проекция на нормаль к площадке dS вектора магнитной индукции,

– магнитный поток.


Циркуляция вектора напряженности электрического поля вдоль замкнутого контура L (ЭДС индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак минус по правилу Ленца означает направление индукционного тока.

Согласно Максвеллу закон электромагнитной индукции (а это именно он), справедлив для любого замкнутого контура, произвольно выбранного в переменном магнитном поле.

Смысл этого уравнения: Переменное магнитное поле в любой точке пространства создает вихревое электрическое поле.

Второе уравнение Максвелла:

где -вектор магнитной напряженности, — плотность электрического тока, — вектор электрического смещения.

Данное уравнение Максвелла является обобщение эмпирического закона Био- Савара о том, что магнитные поля возбуждаются электрическими токами. Смысл второго уравнения в том, что источником возникновения вихревого магнитного поля является также переменное электрическое поле, магнитное действие которого характеризуется током смещения. (-плотность тока смещения).

В интегральном виде второе уравнение Максвелла (Теорема о циркуляции магнитного поля) представлено следующим образом:

Циркуляция вектора напряжённости магнитного поля по произвольному контуру равна алгебраической сумме токов проводимости и тока смещения, сцепленных с контуром.

Когда Максвелл вводил уравнения (более ста лет тому назад!), природа электромагнитного поля была не понятна. В настоящее время природа поля выяснена, и стало ясно, что может быть названo «током» лишь формально. По pяду расчетных соображений такое название, не придавая ему прямого физического смысла, целесообразно сохранить, что в электротехнике и делается. По этой же причине вектор D, входящий в выражение для тока смещения, называют вектором электрического смещения.

Помимо первых двух уравнений в систему уравнений Максвелла входит теорема Гаусса-Остроградского для электрического и магнитного полей:

где — электрического заряда.

Что в интегральном виде представляет собой следующее:

где -поток электрического смещения — поток магнитной индукции сквозь замкнутую поверхность, охватывающую свободный заряд q.

Смысл уравнения 3.2. Электрический заряд – источник электрической индукции.

Уравнение 4.2 выражает факт отсутствия свободных магнитных зарядов.

Полная система уравнений Максвелла в дифференциальном виде (характеризует поле в каждой точке пространства):

Полная система уравнений Максвелла в интегральном виде

Полная система уравнений Максвелла в интегральном виде (интегральная форма записи уравнений облегчает их физическую интерпретацию так ка делает их визуально ближе к известным эмпирическим законам):

Систему уравнений Максвелла дополняют «материальными уравнениями», связывающими векторы c величинами, описывающими электрические и магнитные свойства среды.

где – относительная диэлектрическая проницаемость, – относительная магнитная проницаемость, -удельная электропроводность, – электрическая постоянная, – магнитная постоянная. Среда предполагается изотропной, неферрромагнитной, несегнетоэлектрической.

На границе раздела двух сред выполняются граничные условия:

где — поверхностная плотность свободных зарядов, n- единичный вектор нормали к границе раздела, проведенный из среды 2 в 1, единичный вектор, касательный к границе, — проекция вектора плотности поверхностных токов проводимости на единичный вектор.

Данные уравнения выражают непрерывность нормальных составляющих вектора магнитной индукции и скачок нормальных составляющих вектора смещения. Непрерывность касательных составляющих вектора напряженностей электрического поля на границе раздела и скачок этих составляющих для напряженности магнитного поля.

Примеры решения задач

ПРИМЕР 1

Задание Из системы уравнений Максвелла получить уравнения непрерывности токов и закон сохранения заряда.
Решение Используем уравнение:

Проведем для него операцию дивергенции ( или ). Получим:

из системы уравнений Максвелла знаем, что , (c)

Подставим (с) в (b) получим:

отсюда следует

или в интегральной форме:

Соответственно для замкнутых изолированных областей получим:

Это уравнение непрерывности для тока, содержащее в себе закон сохранения заряда – один из фундаментальных принципов, который подтверждается экспериментом.

ПРИМЕР 2

Задание Доказать, что сумма токов проводимости и тока смещения, сцепленных с контуром, действительно непрерывна и, следовательно, полный ток, сцепленный с любым контуром, не зависит от выбора поверхности, натянутой на этот контур.
Доказательство Допустим, что в произвольном магнитном поле на некоторый контур натянуты две произвольные поверхности и . (рис. 3)