Какая облачность. Облачность

Облачность - комплекс облаков, проявляемых в определённом месте планеты (навеленный пункт или территория) в определённый момент или период времени.

Виды облачности

Тот или иной вид облачности соответствует определённым процессам, происходящим в атмосфере, а поэтому предвещает ту или иную погоду. Знание видов облаков с точки зрения судоводителя важно для предсказания погоды по местным признакам. В практических целях облака подразделяются на 10 основных форм, в свою очередь подразделяемых по высоте и вертикальной протяжённости на 4 вида:

Облака большого вертикального развития. К ним относятся:

Кучевые. Латинское название — Cumulus (на картах погоды обозначаются Cu) – отдельные толстые вертикально развитые облака. Верхняя часть облака – куполообразная, с протуберанцами, нижняя – практически горизонтальная. Средняя вертикальная протяжённость облака – 0.5 -2 км. Средняя высота нижнего основания от земной поверхности – 1.2 км.

– тяжёлые массы облаков большого вертикального развития в виде башен и гор. Верхняя часть представляет собой волокнистую структуру, часто имеющую выбросы в стороны в виде наковальни. Средняя вертикальная протяжённость – 2-3 км. Средняя высота нижнего основания – 1 км. Часто дают ливневые осадки, сопровождающиеся грозами.

Облака нижнего яруса. К ним относятся:

– низкие, аморфные, слоистые, почти однородные дождевые облака тёмно-серого цвета. Нижнее основание – 1-1.5 км. Средняя вертикальная протяжённость облака – 2 км. Из таких облаков выпадают обложные осадки.


– однородная светло-серая туманообразная пелена сплошных низких облаков. Часто образуются из приподнявшегося тумана или переходят в туман. Высота нижнего основания – 0.4 — 0.6 км. Средняя вертикальная протяжённость – 0.7км.


— Низкий облачный покров, состоящий из отдельных гряд, волн, пластин или хлопьев, разделённых просветами или полупрозрачными участками (просвечивающие) или без ясно видимых просветов, волокнистая структура таких облаков яснее видна у горизонта.

Облака среднего яруса. К ним относятся:

– волокнистая вуаль серого или голубоватого цвета. Нижнее основание находится на высоте 3 – 5 км. Вертикальная протяжённость — 04 — 0.8 км).


– слои или пятна, состоящие из сильно сплющенных округлых масс. Нижнее основание находится на высоте 2 – 5 км. Средняя вертикальная протяжённость облака – 0.5 км.

Облака верхнего яруса. Все они – белого цвета, днём почти не дают тени. К ним относятся:

Перисто-слоистые Cirrostratus (Cs) — тонкая белёсая полупрозрачная вуаль, постепенно затягивающая всё небо. Не заслоняют внешних контуров Солнца и Луны, приводя к появлению гало вокруг них. Нижняя граница облака находится на высоте около 7 км.

Определение облачности производится визуально по 10-балльной системе. Если небо безоблачное или на нем имеется одно или несколько небольших облаков, занимающих менее одной десятой части всего небосвода, то облачность считается равной 0 баллов. При облачности, равной 10 баллам, все небо закрыто облаками. Если облаками покрыто 1/10, 2/10, или 3/10 частей небосвода, то облачность считается равной соответственно 1, 2, или 3 баллам.

Определение интенсивности света и уровня радиационного фона*

Для измерения освещенности применяются фотометры. По отклонению стрелки гальванометра определяется освещенность в люксах. Можно пользоваться фотоэкспонометрами.

Для измерения уровня радиационного фона и радиоактивной загрязненности используются дозиметры-радиометры ("Белла", "ЭКО", ИРД-02Б1 и др.). Обычно указанные приборы имеют два режима работы:

1) оценка радиационного фона по величине мощности эквивалентной дозы гамма-излучения (мкЗв/ч), а также загрязненности по гаммаизлучению проб воды, почвы, пищи, продуктов растениеводства, животноводства и т.д.;

* Единицы измерения радиоактивности

Активность радионуклида (А) - уменьшение числа ядер радионуклида за опреде-

ленный интервал времени:

[А] = 1 Ки = 3,7 · 1010 расп./с = 3,7 · 1010 Бк.

Поглощенная доза излучения (Д) составляет энергию ионизирующего излучения, переданную определенной массе облучаемого вещества:

[Д] = 1 Гр = 1 Дж/кг = 100 рад.

Эквивалентная доза облучения (Н) равна произведению поглощенной дозы на

средний коэффициент качества ионизирующего излучения (К), учитывающий биоло-

гическое действие различных излучений на биологическую ткань:

[Н] = 1 Зв = 100 бэр.

Экспозиционная доза (X) является мерой ионизирующего действия излучения, еди-

ницей которой является 1 Кu/кг или 1 Р:

1 Р = 2,58 · 10-4 Кu/кг = 0,88 рад.

Мощность дозы (экспозиционной, поглощенной или эквивалентной) - это отношение приращения дозы за определенный интервал времени к величине этого временного интервала:

1 Зв/с = 100 Р/с = 100 бэр/с.

2) оценка степени загрязненности бета-, гамма - излучающими радионуклидами поверхностей и проб почвы, пищи и др. (частиц/мин.·см2 или кБк /кг).

Предельно допустимая доза облучения составляет 5 мЗв /год.

Определение уровня радиационной безопасности

Определение уровня радиационной безопасности проводится на примере использования дозиметра-радиометра бытового (ИРД-02Б1):

1. Установить переключатель режима работы в положение «мкЗв/ч».

2. Включить прибор, для чего установить переключатель «выкл.- вкл.»

в положение «вкл.». Примерно через 60 с после включения прибор готов

к работе.

3. Поместить прибор в то место, где определяется мощность эквивалентной дозы гамма-излучения. Через 25-30 с на цифровом табло высветится значение, которое соответствует мощности дозы гаммаизлучения в данном месте, выраженной в микрозивертах в час (мкЗв/ч).

4. Для более точной оценки необходимо брать среднее из 3-5 последовательных показаний.

Показание на цифровом табло прибора 0,14 означает, что мощность дозы составляет 0,14 мкЗв/ч или 14 мкР/ч (1 Зв = 100 Р).

Через 25-30 с после начала работы прибора необходимо снять три последовательных показания и найти среднее значение. Результаты оформить в виде табл. 2.

Таблица 2. Определение уровня радиации

Показания прибора

Среднее значение

мощности дозы

Оформление результатов микроклиматических наблюдений

Данные всех микроклиматических наблюдений фиксируются в тетради, а затем обрабатываются и оформляются в виде табл. 3.

Таблица 3. Результаты обработки микроклиматических

наблюдений

Температу-

ра воздуха

Температу-

Влажность

на высоте,

ра воздуха,

воздуха на

высоте, %

Как известно, многие из отраслей промышленности, сельского хозяйства, транспортные службы очень сильно зависят от оперативности, своевременности и надежности прогнозов федеральной метеорологической службы. Заблаговременное оповещение об опасных и особо опасных явлениях погоды, своевременность подачи штормовых предупреждений – всё это необходимые условия для успешной и безопасной работы многих отраслей хозяйства и транспорта. Так, например, долгосрочные метеорологические прогнозы имеют решающий вес при организации сельхоз производств.

Одним из самых важных параметров, определяющих возможность прогнозирования опасных погодных условий, является такой показатель, как высота нижней границы облаков.

В метеорологии, высота облаков - это высота нижней границы облаков над поверхностью земли.

Для понимания важности проведения исследований по определению высоты облаков, следует упомянуть тот факт, что облака могут быть разных типов. Для различных типов облаков высота их нижней границы может варьироваться в некоторых пределах, причем, выявлено среднее значение высоты облаков.

Итак, облака могут быть:

Слоистые облака (средняя высота 623 м.)

Дождевые облака (средняя высота 1527 м.)

Кучевые (вершина) (1855)

Кучевые (основание) (1386)

Грозовые (вершина) (средняя высота 2848 м.)

Грозовые (основание) (средняя высота 1405 м.)

Ложные перистые (средняя высота 3897 м.)

Слоисто-кучевые (средняя высота 2331 м.)

Высокие кучевые (ниже 4000 м.) (средняя высота 2771 м.)

Высокие кучевые (выше 4000 м.) (средняя высота 5586 м.)

Перисто-кучевые (средняя высота 6465 м.)

Низкие перисто-слоистые (средняя высота 5198 м.)

Высокие перисто-кучевые (средняя высота 9254 м.)

Перистые (средняя высота 8878 м.)

Как правило, измеряют высоту облаков нижнего и среднего ярусов, не превышающую 2500 м. При этом, определяют высоту самых нижних облаков из всего их массива. При тумане, считают, что высота облаков равна нулю, и, в данном случае, в аэропортах измеряется “вертикальная видимость”.



Для определения высоты нижней границы облаков используется метод светолокации. В России, для этих целей выпускается измеритель , в котором в качестве источника импульсов и света используется импульсная лампа.

Высота нижней границы облаков методом светолокации с использованием ДВО-2 определяется при помощи замера времени, которое требуется световому импульсу для прохождения пути от излучателя света до облака и обратно, а также преобразования полученного значения времени в пропорциональное ему значение высоты облаков. Таким образом, световой импульс посылается излучателем и, после отражения, принимается приемником. При этом, излучатель и приемник должны быть расположены в непосредственной близости друг от друга.


Конструктивно измеритель ДВО-2 представляет собой комплекс из нескольких отдельных приборов:

Передатчика и приёмника,

Линий связи,

Блока измерительного,

Пульта дистанционного.


Измеритель высоты облаков ДВО-2 может работать автономно с блоком измерительным, в комплекте с дистанционным пультом и в составе автоматизированных метеорологических станций.

Передатчик состоит из импульсной лампы, питающих её конденсаторов и параболического отражателя. Отражатель вместе с лампой и конденсаторами установливается в кардановом подвесе, заключенном в корпусе с открывающейся крышкой.

Приемник состоит из параболического зеркала, фотоприемника, фотоусилителя, также установленных в кардановом подвесе и находящихся в корпусе с открывающейся крышкой.

Передатчик и приемник должны быть размещены вблизи основного пункта наблюдений. На взлетно-посадочных полосах, передатчик и приемник устанавливаются на ближайших приводных радиомаяках с обоих концов полосы.

Блок измерительный, предназначающийся для сбора и обработки информации, состоит из измерительной платы, высоковольтного блока и блока питания.

Пульт дистанционный включает плату клавиатуры и индикации и плату управления.

Сигнал от приемника по двухпроводной потенциально развязанной линии связи с однополярными сигналами и номинальным током(20±5)мА передается в измерительный блок, а оттуда - в пульт дистанционный. В зависимости от комплектации, вместо пульта дистанционного для обработки и отображения на дисплее оператора сигнал может передаваться на центральную систему метеостанции.

Измеритель высоты облаков ДВО-2 может работать или непрерывно или по мере необходимости. Пульт дистанционный имеет последовательный интерфейс RS-232, предназначающийся для работы с компьютером. Информация от измерителей ДВО-2 может передаваться по линии связи на дистанции до 8 км.

Обработка результатов измерения на измерительном блоке ДВО-2 включает:

Осреднение результатов по 8-ми измеренным значениям;

Исключение из числа замеров тех результатов, в которых наблюдается кратковременное пропадание отраженного сигнала. Т.е. исключение фактора «разрыва в облаках»;

Выдачу сигнала об «отсутствии облаков» в случае, если среди 15 проведенных наблюдений не набирается 8 значимых;

Исключение так называемых местников - ложных сигналов отражения.

2 вариант 1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м: а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.;

г) 680 мм рт. ст. 2. Средние месячные температуры высчитываются: а) по сумме среднесуточных температур; б) делением суммы средних суточных температур на число суток в месяце; в) от разницы сумы температур предыдущего и последующего месяцев. 3. Установите соответствие: давление показатели а) 760 мм рт. ст.; 1) ниже нормы; б) 732 мм рт. ст.; 2) нормальное; в) 832 мм рт. ст. 3) выше нормы. 4. Причиной неравномерного распределения солнечного света по земной поверхности является: а) удаленность от Солнца; б) шарообразность Земли; в) мощный слой атмосферы. 5. Суточная амплитуда – это: а) общее количество показателей температуры в течение суток; б) разница между наибольшими и наименьшими показателями температуры воздуха в течение суток; в) ход температур в течение суток. 6. С помощью какого прибора измеряется атмосферное давление: а) гигрометра; б) барометра; в) линейки; г) термометра. 7. Солнце бывает в зените на экваторе: а) 22 декабря; б) 23 сентября; в) 23 октября; г) 1 сентября. 8. Слой атмосферы, где происходят все погодные явления: а) стратосфера; б) тропосфера; в) озоновый; г) мезосфера. 9. Слой атмосферы, не пропускающий ультрафиолетовые лучи: а) тропосфера; б) озоновый; в) стратосфера; г) мезосфера. 10. В какое время летом при ясной погоде наблюдается наименьшая температура воздуха: а) в полночь; б) перед восходом Солнца; в) после захода Солнца. 11. Высчитайте АД горы Эльбрус. (Высоту вершин найдите на карте, АД у подножия горы возьмите условно за 760 мм рт. ст.) 12. На высоте 3 км температура воздуха = - 15 ‘C, чему равна температура воздуха у поверхности Земли: а) + 5’C; б) +3’C; в) 0’C; г) -4’C.

1 вариант Установите соответствие: давление показатели а) 749 мм рт.ст.;

1) ниже нормы;

б) 760 мм рт.ст.; 2) нормальное;

в) 860 мм рт.ст.; 3) выше нормы.

Разность между наибольшим и наименьшим значениями температуры воздуха

называется:

а) давлением; б) движением воздуха; в) амплитудой; г) конденсацией.

3. Причиной неравномерного распределения солнечного тепла на поверхности Земли

является:

а) удаленность от солнца; б) шарообразность;

в) разная мощность слоя атмосферы;

4. Атмосферное давление зависит от:

а) силы ветра; б) направления ветра; в) разницы температуры воздуха;

г) особенностей рельефа.

Солнце бывает в зените на экваторе:

Озоновый слой расположен в:

а) тропосфере; б) стратосфере; в) мезосфере; г) экзосфере; д) термосфере.

Заполните пропуск: воздушной оболочкой земли является - _________________

8. Где наблюдается наименьшая мощность тропосферы:

а) на полюсах; б) в умеренных широтах; в) на экваторе.

Расположите этапы нагрева в правильной последовательности:

а) нагрев воздуха; б) солнечные лучи; в) нагрев земной поверхности.

В какое время летом, при ясной погоде, наблюдается наибольшая температура

воздуха: а) в полдень; б) до полудня; в) после полудня.

10. Заполните пропуск: при подъёме в горы атмосферное давление…, на каждые

10,5 м на ….мм рт.ст.

Высчитайте атмосферное давление г. Народная. (Высоту вершин найдите на

карте, АД у подножия гор возьмите условно за 760 мм рт.ст.)

В течение суток были зафиксированы следующие данные:

max t=+2’C, min t=-8’C; Определите амплитуду и среднесуточную температуру.

2 вариант

1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м:

а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.; г) 680 мм рт. ст.

2. Средние месячные температуры высчитываются:

а) по сумме среднесуточных температур;

б) делением суммы средних суточных температур на число суток в месяце;

в) от разницы сумы температур предыдущего и последующего месяцев.

3. Установите соответствие:

давление показатели

а) 760 мм рт. ст.; 1) ниже нормы;

б) 732 мм рт. ст.; 2) нормальное;

в) 832 мм рт. ст. 3) выше нормы.

4. Причиной неравномерного распределения солнечного света по земной поверхности

является: а) удаленность от Солнца; б) шарообразность Земли;

в) мощный слой атмосферы.

5. Суточная амплитуда – это:

а) общее количество показателей температуры в течение суток;

б) разница между наибольшими и наименьшими показателями температуры воздуха в

течение суток;

в) ход температур в течение суток.

6. С помощью какого прибора измеряется атмосферное давление:

а) гигрометра; б) барометра; в) линейки; г) термометра.

7. Солнце бывает в зените на экваторе:

2) что можно изобразить на плане местности?
а пришкольный участок
б океан
в Крымский полуостров
г материк
3) какие из перечисленных объектов обозначаются на плане местности линейными знаками?
а реки,озёра
б границы, пути сообщения
в населённые пункты, вершины гор
г полезные ископаемые, леса
4) в каких пределах измеряется географическая широта?
а 0-180"
б 0-90"
в 0-360"
г 90-180"

На некоторой высоте над земной поверхностью и состоят из капелек воды или ледяных кристалликов, или из тех и других вместе. Все многообразие облаков может быть сведено к нескольким типам. В основу общепринятой в настоящее время международной классификации облаков положены два признака: внешний вид и высота их нижней границы.

По внешнему виду облака делятся на три класса: отдельные, не связанные друг с другом облачные массы, слои с неоднородной поверхностью и слои в виде однородной пелены. Все эти формы могут встречаться на разных высотах, отличаясь по плотности и размеру внешних элементов (барашков, вспученностей, валов, ряби и др.)

По высоте нижшего основания над земной поверхностью облака делятся на 4 яруса: верхний (Ci Cc Cs – высота более 6 км), средний (Ac As – высота от 2 до 6 км), нижний (Sc St Ns – высота менее 2 км), вертикального развития (Cu Cb – могут относиться к разным ярусам, а у наиболее мощных кучево-дождевых облаков (Cb) основание располагается на нижнем ярусе, а вершина может достигать верхнего).

Облачный покров в значительной степени определяет количество поступающей к поверхности Земли солнечной радиации и является источником осадков, влияя таким образом на формирование погоды и климата.

Количество облаков на территории России распределяется довольно неравномерно. Наиболее пасмурными являются районы, подверженные активной циклонической деятельности, характеризующиеся развитой адвекцией влажных . К ним относятся северо-запад Европейской части России, побережье Камчатки, Сахалина, Курильские и . Среднее годовое количество общей облачности в этих районах составляет 7 баллов. Значительная часть Восточной Сибири характеризуется меньшим среднегодовым количеством облаков – от 5 до 6 баллов. Этот сравнительно малооблачный район Азиатской части России находится в сфере действия азиатского .

Распределение среднего годового количества нижней облачности в общих чертах следует за распределением общей облачности. Наибольшее количество облаков нижнего яруса также приходится на северо-запад Европейской части России. Здесь они являются преобладающими (лишь на 1-2 балла меньше, чем количество общей облачности). Минимальное количество облаков нижнего яруса отмечается , особенно в (не более 2 баллов), что свойственно континентальному характеру климата этих районов.

Годовой ход количества как общей, так и нижней облачности на Европейской части России характеризуется минимальными значениями летом и максимальными поздней осенью и зимой, когда особенно проявляется влияние . Прямо противоположный годовой ход количества общей и нижней облачности наблюдается на Дальнем Востоке, и . Здесь наибольшее количество облаков приходится на июль, когда действует летний муссон, приносящий с океана большое количество водяного пара. Минимум облачности отмечается в январе в период наибольшего развития зимнего муссона, с которым в эти районы поступает сухой выхоложенный континентальный воздух с материка.

Суточный ход общего количества облаков на всей территории России характеризуется следующими особенностями:

1) его амплитуда на большей части территории не превышает 1-2 баллов (за исключением центральных районов Европейской части России, где она увеличивается до 3 баллов);

2) количество облаков днем больше, чем ночью, при этом в январе максимум приходится на утренние часы; в центральные месяцы весны и осени суточный ход сглажен, а максимум может смещаться на разные часы суток; в апреле суточный ход ближе к летнему, а в октябре – к зимнему типу;

3) суточный ход нижней облачности практически повторяет суточный ход общей облачности.

Распределение облаков по формам характеризуется относительным постоянством во времени и в пространстве. Почти на всей территории России среди облаков верхнего яруса преобладают Ci среднего яруса – Ac нижнего – Sc и Ns

В годовом ходе в летний период отмечается преобладание кучевых (Cu) и слоисто-кучевых облаков (Sc), в то время как повторяемость слоистых (St) и слоисто-дождевых (Ns), являющихся фронтальными, невелика, поскольку летом сравнительно редко создаются условия для активной циклонической деятельности. Для зимнего, весеннего и осеннего периодов на большей части территории России характерно возрастание повторяемости высоко-слоистых (As), высоко-кучевых (Ac) и слоисто-кучевых (Sc) облаков, при этом на Европейской части России отмечается некоторое увеличение повторяемости слоистых и слоисто-кучевых облаков (St).