Алгебраический материал при обновленной программе. Алгебраический материал в курсе математики начальной школы и методика его изучения

«Изучение алгебраического материала в начальной школе»

Выполнила учитель высшей категории Аверьякова Н.Н.

Введение.

Глава 1. Общетеоретические аспекты изучения алгебраического материала в начальной школе.

1.1.Опыт введения элементов алгебры в начальной школе.

1.2. Психологические основы введения алгебраических понятий в начальной школе.

1.3. Проблема происхождения алгебраических понятий и её значение для построения учебного предмета.

2.1. Обучение в начальной школе с точки зрения потребностей средней школы.

2.2. Сравнение (противопоставление) понятий на уроках математики.

2.3. Совместное изучение сложения и вычитания, умножения и деления.

Глава 3. Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72.

3.1. Обоснование использования инновационных технологий (технология УДЕ).

3.2. Об опыте ознакомления с алгебраическими понятиями.

3.3.Диагностика результатов обучения математике.

Заключение.

Библиографический список.

Введение

В любой современной системе общего образования математика занимает одно из центральных мест, что несомненно говорит об уникальности этой области знаний.

Что представляет собой современная математика? Зачем она нужна? Эти и подобные вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребёнка и его образовательных потребностей.

Часто говорят, что математика – это язык современной науки. Однако, представляется что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому, что математика к нему не сводится.

Выдающийся отечественный математик А.Н.Колмогоров писал: «Математика не просто один из языков. Математика – это язык плюс рассуждения, это как бы язык и логика вместе. Математика – орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим…Очевидные сложности природы с её странными законами и правилами, каждое из которых допускает очень подробное отдельное объяснение, на самом деле тесно связаны. Однако, если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому.»(с.44 –(12))

Таким образом, математика позволяет сформировать определённые формы мышления, необходимые для изучения окружающего нас мира.

Наша система образования устроена так, что для многих школа даёт единственную возможность приобщиться к математической культуре, овладеть ценностями, заключенными в математике.

Каково же влияние математики вообще и школьной математики в частности на воспитание творческой личности? Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является важнейшим элементом общей культуры. Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Максимально раскрывая возможности человеческого мышления, математика является высшим достижением.

Курс математики(без геометрии) фактически разбит на 3 основные части: на арифметику (1-5классы), алгебру (6-классы), элементы анализа (9-11классы). Каждая эта часть имеет свою особую «технологию». Так, в арифметике она связана, например, с вычислениями, производимыми над многозначными числами, в алгебре- с тождественными преобразованиями, логарифмированием, в анализе- с дифференцированием. Но каковы более глубокие основания, связанные с понятийным содержанием каждой части? Следующий вопрос касается оснований для различения школьной арифметики и алгебры. В арифметику включают изучение натуральных чисел(целых положительных) и дробей (простых и десятичных). Однако специальный анализ показывает, что соединение этих видов чисел в одном школьном предмете неправомерно. Дело в том, что эти числа имеют разные функции: первые связаны со счётом предметов, вторые- с измерением величин. С точки зрения измерения величин, как отмечал А.Н.Колмогоров, «нет столь глубокого различия между рациональными и иррациональными действительными числами. Из педагогических соображений надо задерживаться на рациональных числах, так как их легко записать в форме дробей, однако то употребление, которое им с самого начала придается, должно было бы сразу привести к действительным числам во всей их общности»(12-с.9). Таким образом, есть реальная возможность на базе натуральных (целых) чисел формировать сразу «самое общее понятие числа»(по терминологии А.Лебега), понятие действительного числа. Но со стороны построения программы это означает не более не менее, как ликвидацию арифметики дробей в её школьной интерпретации. Переход от целых чисел к действительным- это переход от арифметики к алгебре, к созданию фундамента для анализа. Эти идеи, высказанные более 30лет назад, актуальны и сегодня. Возможно ли изменение структуры обучения математики в начальной школе в данном направлении? Каковы достоинства и недостатки алгебраизации начального обучения математики? Цель данной работы- попытаться ответить на поставленные вопросы.

Реализация поставленной цели требует решения следующих задач:

Рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа;

Изучение конкретной методики обучения этим понятиям в начальной школе;

Показать практическую применимость рассматриваемых положений в начальной школе на уроках математики в СОУ СОШ №72 учителем Аверьяковой Н.Н.

ГЛАВА 1. ОБЩЕТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА В НАЧАЛЬНОЙ ШКОЛЕ.

  1. ОПЫТ ВВЕДЕНИЯ ЭЛЕМЕНТОВ АЛГЕБРЫ В НАЧАЛЬНОЙ ШКОЛЕ.

Содержание учебного предмета зависит от многих факторов - от требований жизни к знаниям учащихся, от уровня соответствующих наук, от психических и физических возрастных возможностей детей. Правильный учёт этих факторов является существенным условием наиболее эффективного обучения школьников, расширения их познавательных возможностей. Но иногда это условие по ряду причин не соблюдается. Представляется, что в настоящее время программы преподавания некоторых учебных предметов, в т.ч. математики, не соответствуют новым требованиям жизни, уровню современных наук и новым данным возрастной психологии и логики. Это обстоятельство диктует необходимость теоретической и экспериментальной проверки возможных проектов нового содержания учебных предметов. Фундамент математических навыков закладывается в начальной школе. Но, к сожалению, как сами математики, так и методисты и психологи уделяют весьма малое внимание именно содержанию начальной математики. Достаточно сказать, что программа по математике в начальной школе(1-4) в основных своих чертах сложилась еще 50-60 лет назад и отражает, естественно, систему математических, методических и психологических представлений того времени.

Рассмотрим характерные особенности государственного стандарта по математике. Основным её содержанием являются целые числа и действия над ними, изучаемые в определённой последовательности. Наряду с этим программа предполагает изучение метрических мер и мер времени, овладение умением пользоваться ими для измерения, знание некоторых элементов наглядной геометрии - вычерчивание прямоугольника,квадрата, измерение отрезков, площадей, вычисление объемов. Полученные знания и навыки ученики должны применять к решению задач и выполнению простейших расчетов. На протяжении всего курса решение задач проводится параллельно изучению чисел и действий - для этого отводится половина соответствующего времени. Решение задач помогает учащимся понять конкретный смысл действия, уяснить различные случаи их применения, установить зависимость между величинами, получить элементарные навыки анализа и синтеза. С 1 по 4 класс дети решают следующие основные типы задач(простых и составных): на нахождение суммы и остатка, произведения и частного, на увеличение и уменьшение данных чисел, на разностное и кратное сравнение, на простое тройное правило, на пропорциональное деление, на нахождение неизвестного по двум разностям и другие виды задач. С разными типами зависимостей величин дети сталкиваются при решении задач. Но весьма характерно- ученики приступают к задачам после и по мере изучения чисел; главное, что требуется при решении- это найти числовой ответ. Дети с большим трудом выявляют свойства количественных отношений в конкретных, частных ситуациях, которые принято считать арифметическими задачами. Практика показывает, что манипулирование числами часто заменяет действительный анализ условий задачи с точки зрения зависимостей реальных величин. Задачи, вводимые в учебники, не представляют к тому же системы, в которых более «сложные» ситуации были бы связаны с более «глубокими» пластами количественных отношений. Задачи одной и той же трудности можно встретить и в начале, и в конце учебника. Они меняются от раздела к разделу и от класса к классу по запутанности сюжета(возрастает число действий) , по рангу чисел(от десяти до миллиарда), по сложности физических зависимостей(от задач на распределение до задач на движение) и по другим параметрам. Только один параметр –углубление в систему собственно математических закономерностей -в них проявляется слабо, неотчетливо. Поэтому очень сложно установить критерий математической трудности той или иной задачи. Почему задачи на нахождение неизвестного по двум разностям и на выяснение среднего арифметического труднее задач на разностное и кратное сравнение? Методика не даёт ответа на данный вопрос.

Таким образом, учащиеся начальных классов не получают адекватных, полноценных знаний о зависимостях величин и общих свойствах количества ни при изучении элементов теории чисел, ибо они в школьном курсе связаны по преимуществу с техникой вычислений, ни при решении задач, ибо последние не обладают соответствующей формой и не имеют требуемой системы. Попытки методистов усовершенствовать приёмы преподавания хотя и приводят к частным успехам, однако не меняют общего положения дела, так как они заранее ограничены рамками принятого содержания.

Представляется, что в основе критического анализа принятой программы по арифметике должны лежать следующие положения:

Понятие числа не тождественно понятию о количественной характеристике объектов;

Число не является исходной формой выражения количественных отношений.

Приведём обоснование этих положений. Общеизвестно, что современная математика(в частности, алгебра) изучает такие моменты количественных отношений, которые не имеют числовой оболочки. Также хорошо известно, что некоторые количественные отношения вполне выразимы без чисел и до чисел, например, в отрезках, объёмах и т.д.(отношение «больше», «меньше», «равно»). Изложение исходных математических понятий в современных руководствах осуществляется в такой символике, которая не предполагает обязательного выражения объектов числами. Так, в книге Е.Г.Гонина «Теоретическая арифметика» основные математические объекты с самого начала обозначаются буквами и особыми знаками. Характерно, что те или иные виды чисел и числовые зависимости приводятся лишь как примеры, иллюстрации свойств множеств, а не как их единственно возможная и единственно существующая фора выражения. Примечательно, что многие иллюстрации отдельных математических определений даются в графической форме, через соотношение отрезков, площадей. Все основные свойства множеств и величин можно вывести и обосновать без привлечения числовых систем; более того последние сами получают обоснование на основе общематематических понятий.

В свою очередь многочисленные наблюдения психологов и педагогов показывают, что количественные представления возникают у детей задолго до появления у них знаний о числах и приёмах оперирования ими. Правда, есть тенденция относить эти представления к категории «доматематических образований» (что вполне естественно для традиционных методик, отождествляющих количественную характеристику объекта с числом), однако это не меняет существенной функции в общей ориентировке ребёнка в свойствах вещей. И порой случается, что глубина этих якобы «доматематических образований» более существенна для развития собственно математического мышления ребёнка, чем тонкостей вычислительной техники и умение находить чисто числовые зависимости. Примечательно, что академик А.Н.Колмогоров, характеризуя особенности математического творчества, специально отмечает следующее обстоятельство: «В основе большинства математических открытий лежит какая-либо простая идея: наглядное геометрическое построение, новое элементарное неравенство и т.п. Нужно только применить надлежащим образом эту простую идею к решению задачи, которая с первого взгляда кажется недоступной(12-с.17).

В настоящее время целесообразны самые различные идеи относительно структуры и способов построения новой программы. К работе по её конструированию необходимо привлечь математиков, психологов, логиков, методистов. Но во всех конкретных вариантах она, как представляется, должна удовлетворять следующим требованиям:

Преодолевать существующий разрыв между содержанием математики в начальной и средней школе;

Давать систему знаний об основных закономерностях количественных отношений объективного мира; при этом свойства чисел как особой формы выражения количества, должны стать специальным, но не основным разделом программы;

Прививать детям приёмы математического мышления, а не только навыки вычислений: это предполагает построение такой системы задач, в основе которой лежит углубление в сферу зависимостей реальных величин (связь математики с физикой, химией, биологией и другими науками, изучающими конкретные величины);

Решительно упрощать всю технику вычисления, сводя до минимума ту работу, которую нельзя выполнить без соответствующих таблиц, справочников, других подсобных средств.

Смысл этих требований ясен: в начальной школе возможно преподавать математику как науку о закономерностях количественных отношений, о зависимостях величин; техника вычислений и элементы теории чисел должны стать особым и частным разделом программы. Опыт конструирования новой программы по математике и её экспериментальная проверка, проводимая с конца 1960 года, позволяют уже в настоящее время говорить о возможности введения в школу, начиная с 1 класса систематического курса математики, дающего знания о количественных отношениях и зависимостях величин в алгебраической форме.

1.2.ПСИХОЛОГИЧЕСКИЕ ОСНОАВ ВВЕДЕНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ В НАЧАЛЬНОЙ ШКОЛЕ.

В последнее время при модернизации программ особое значение придают подведению теоретико-множественного фундамента под школьный курс (эта тенденция проявляется и у нас, и за рубежом). Реализация этой тенденции в преподавании (особенно в начальных классах, как это наблюдается, например, в американской школе неизбежно поставит ряд трудных вопросов перед детской и педагогической психологий и перед дидактикой, ибо сейчас почти нет исследований, раскрывающих особенности усвоения ребенком смысла множества (в отличие от усвоения счета и числа, которое исследовалось весьма многосторонне).

Логические и психологические исследования последних лет (в особенности работы Ж.Пиаже) вскрыли связь некоторых механизмов детского мышления с общематематическими понятиями. Ниже специально рассматриваются особенности этой связи и их значение для построения математики как учебного предмета (при этом речь идет о теоретической стороне дела, а не о каком-либо частном варианте программы).

Натуральное число является фундаментальным понятием математики на протяжении её истории; весьма существенную роль оно играет во всех областях производства, техники, повседневной жизни. Это позволяет математикам- теоретикам отводить ему особое место среди других понятий математики. В разной форме высказываются положения о том, что понятие натурального числа - исходная ступень математической абстракции, что оно является основой для построения большинства математических дисциплин.

Выбор начальных элементов математики как учебного предмета по существу реализует эти общие положения. При этом предполагается, что знакомясь с числом, ребёнок одновременно раскрывает для себя исходные особенности количественных отношений. Счёт и число- основа всего последующего усвоения математики в школе.

Однако есть основания полагать, что эти положения, справедливо выделяя особое и фундаментальное значение числа, вместе с тем неадекватно выражают его связь с другими математическими понятиями, неточно оценивают место и роль числа в процессе усвоения математики. Из-за этого обстоятельства, в частности проистекают некоторые существенные недостатки принятых программ, методик и учебников по математике. Необходимо специально рассмотреть действительную связь понятия о числе с другими понятиями.

Многие общематематические понятия, и в частности понятия соотношения эквивалентности и порядка, систематически рассматриваются в математике независимо от числовой формы. Эти понятия не теряют своего независимого характера на их основе можно описывать и изучать частный предмет - разнее числовые системы, понятия, о которых сами по себе не покрывают смысла и значения исходных определений. Причём в истории математической науки общие понятия развивались именно в той мере, в какой «алгебраические операции», известный пример которых доставляют четыре действия арифметики, стали применяться к элементам совершенно не «числового» характера.

В последнее время делаются попытки развернуть в преподавании этап введения ребёнка в математику. Эта тенденция находит своё выражение в методических руководствах, а также в некоторых экспериментальных учебниках. Так в одном американском учебнике, предназначенном для обучения детей 6-7лет, на первых страницах вводятся задания и упражнения, специально тренирующие детей в установлении тождественности предметных групп. Детям показывается приём соединения множеств,- при этом вводится соответствующая математическая символика. Работа с числами опирается на элементарные сведения о множествах. Можно по-разному оценивать содержание конкретных попыток реализации этой тенденции, но сама она вполне правомерна и перспективна.

На первый взгляд понятия «отношение», «структура», «законы композиции» и другие имеющиеся сложные математические определения, не могут быть связаны с формированием математических представлений у маленьких детей. Конечно, весь подлинный и отвлечённый смысл этих понятий и их место в аксиоматическом построении математики как науки есть объект усвоения уже хорошо развитой и «натренированной» в математике головы. Однако некоторые свойства вещей, фиксируемые этими понятиями, так или иначе проступают для ребёнка уже сравнительно рано: на это имеются конкретные психологические данные.

Прежде всего следует иметь в виду, что от момента рождения до 7-10 лет у ребёнка возникают и формируются сложнейшие системы общих представлений об окружающем мире и закладывается фундамент содержательно- предметного мышления. Причём на сравнительно узком эмпирическом материале дети выделяют общие схемы ориентации в пространственно- временных и причинно- следственных зависимостях вещей. Эти схемы служат своеобразным каркасом той «системы координат», внутри которой ребёнок начинает всё глубже овладевать разными свойствами многообразного мира. Конечно, эти общие схемы мало осознаны, и в малой степени могут быть выражены самим ребёнком в форме отвлечённого суждения. Они, говоря образно, являются интуитивной формой организации поведения ребёнка (хотя, конечно, всё более и более отображаются и в суждениях).

В последние десятилетия особенно интенсивно вопросы формирования интеллекта детей и возникновения у них общих представлений о действительности, времени и пространстве изучались известным швейцарским психологом Ж.Пиаже и его сотрудниками. Некоторые его работы имеют прямое отношение к проблемам развития математического мышления ребёнка, и поэтому нам важно рассмотреть их применительно к вопросам конструирования учебной программы.

В одной из своих последних книг(17) Ж.Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до 12-14лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения (например А+А1=В) и операции, ей обратной (В- А1=А). сериация- это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих).

Анализируя становление классификации, Ж.Пиаже показывает, как от исходной формы, от создания «фигурной совокупности», основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства («нефигурные совокупности»), а затем к самой сложной форме- к включению классов, обусловленному связью между объёмом и содержанием понятия. Автор специально рассматривает вопрос о формировании классификации не только по одному, но и по двум- трём признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов.

Эти исследования преследовали вполне определённую цель- выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способность ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда «операции и действия могут развертываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto (в силу самого факта) понимание другого(17-стр.15).

Обратимость, согласно Ж.Пиаже, представляет фундаментальный закон композиции, свойственный уму. Она имеет две взаимодополняющие и несводимые формы: обращение (инверсия или отрицание) и взаимность. Обращение имеет место, например, в том случае, когда пространственное перемещение предмета из А в В можно аннулировать, переводя обратно предмет из В в А, что в итоге эквивалентно нулевому преобразованию (произведение операции на обратную есть тождественная операция, или нулевое преобразование).

Взаимность (или компенсация) предполагает тот случай, когда, например, при перемещении предмета из А в В предмет так и остаётся в В, но ребенок сам перемещается из А в В и воспроизводит начальное положение, когда предмет находился против его тела. Движение предмета здесь не аннулировано, но оно компенсировалось путём соответствующего перемещения собственного тела - и это уже другая форма преобразования, нежели обращение (17-стр.16). Ж.Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребёнка (особенно тех логических операций, которые осуществляет в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими(17-стр.17). так алгебраическая структура («группа») соответствует операторным механизмам ума, подчиняющимся одной из форм обратимости- инверсии(отрицанию). Группа имеет четыре элементарных свойства: произведению двух элементов группы также даёт элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:

Координация двух систем действия составляет новую схему, присоединяемую к предыдущим;

Операция может развиваться в двух направлениях;

При возвращении к исходной точке мы находим её неизменной;

К одной и той же точке можно прийти разными путями, причём сама точка считается неизменной.

Рассмотрим основные положения, сформулированные Ж.Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж.Пиаже показывают, сто в период дошкольного и школьного детства у ребёнка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их положений. Причём уже на стадии конкретных операций (с 7-лет) интеллект ребёнка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики. Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и ёмкого характера тех стадий умственного развития ребёнка, которые связаны с периодом от 2 до 7 и от 7 до 11лет. Рассмотрение результатов, полученных Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего фактические данные о формировании интеллекта ребёнка с 2х до 11лет говорят о том, что ему в это время не только не «чужды» свойства объектов, описываемые посредством математических понятий «структура- отношение», но они сами органически входят в мышление ребёнка.

Традиционные программы не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, таящихся в процессе интеллектуального развития ребенка. К 7- годам у детей уже в достаточной мере развит план мыслительных действий, и путём обучения по соответствующей программе, в которой свойства математических структур даны «явно» и детям даются средства их анализа, можно быстрее подвести детей к уровню «формальных» операций, чем в те сроки, в которые это осуществляется при «самостоятельном» открытии этих свойств. При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж.Пиаже к 7-11годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе.

Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь структур детского мышления и общеалгебраических структур. Наличие этой связи открывает принципиальные возможности для построения учебного предмета, развёртывающегося по схеме «от простых структур- к сложным сочетаниям». Указанный способ может быть мощным рычагом формирования у детей такого мышления, которое опирается на достаточно прочный понятийный фундамент.

1.3.ПРОБЛЕМА ПРОИСХОЖДЕНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ И ЕЁ ЗНАЧЕНИЕ ДЛЯ ПОСТРОЕНИЯ УЧЕБНОГО ПРЕДМЕТА.

Разделение школьного курса математики на алгебру и арифметику условное. Переход происходит постепенно. Одним из центральных понятий начального курса является понятие натурального числа. Оно трактуется как количественная характеристика класса эквивалентных множеств. Раскрывается понятие на конкретной основе в результате оперирования множества и измерения величин. Необходимо проанализировать содержание понятия «величина». Правда, с этим термином связывается другой - «измерение». В общем употреблении термин величина связан с понятиями «равно», «больше», «меньше», которые описывают самые различные качества. Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А иВ, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А В, А В.

В.Ф.Коган выделяет следующие восемь основных свойств понятий «равно», «больше», «меньше».

1) имеет место по крайней мере одно из соотношений: А=В, А В, А В;

2) если имеет место соотношение А=В, т не имеет места соотношение А В;

3) если имеет место А=В, то не имеет места соотношение А В;

4) если А=В и В=С, то А=С;

5) если А В и В С, то А С;

6) если А С и В С, то А С;

7) равенство есть отношение обратимое: А=В В=А;

8) равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.

«Устанавливая критерии сравнения, мы претворяем множество в величину»,- писал В.Ф.Коган. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины». Так возникают понятия «объём» , «вес», «длина» и т.д. «При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения»,- отмечал В.Ф.Коган.

В качестве важнейшего примера математической величины этот автор рассматривает натуральный ряд чисел. С точки зрения такого критерия сравнения, как положение, занимаемое числами в ряду (занимает одно место, следует за…, предшествует…), этот ряд удовлетворяет постулатам и поэтому представляет собой величину. Работая с величинами(отдельные из значения целесообразно фиксировать буквами), можно производить сложную систему преобразований, устанавливая зависимость их свойств, переходя от равенства к неравенству, выполняя сложение и вычитание. Натуральные и действительные числа одинаково прочно связаны с величинами и некоторыми их существенными особенностями. Нельзя ли эти и другие свойства сделать предметом специального изучения ребёнка ещё до того, как вводится числовая форма описания отношения величин? Они могут послужить предпосылками для последующего развёрнутого введения числа и его разных видов, в частности для пропедевтики дробей, понятий координат, функции и других понятий уже в младших классах. Что может быть содержанием этого начального раздела? Это знакомство с физическими объектами, критериями их сравнения, выделяющими величину как предмет математического рассмотрения, знакомство со способами сравнения и знаковыми средствами фиксации его результатов, с приёмами анализа общих свойств величин. Необходим такой начальный раздел курса, который знакомил бы детей с основными алгебраическими понятиями(до введения числа). Каковы же основные узловые темы такой программы?

Тема 1. Уравнивание и комплектование объектов (по длине, объёму, весу, составу частей и других параметрам).

Тема 2. Сравнение объектов и фиксация его результатов формулой равенства- неравенства.

Задачи на сравнение объектов и знаковое обозначение результатов этого действия;

Словесная фиксация результатов сравнения (термины «больше», «меньше», «равно»).

Письменные знаки

Обозначение результатов сравнения рисунком;

Обозначение сравниваемых объектов буквами.

Тема 3. Свойства равенства и неравенства.

Тема 4. Операция сложения (вычитания).

Тема 5. Переход от неравенства типа А В к равенству через операцию сложения(вычитания).

Тема 6. Сложение- вычитание равенств – неравенств.

При правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий этот материал может быть полноценно усвоен за три месяца.

Далее дети знакомятся со способами получения числа, выражающим отношение какого- либо объекта как целого и его части. Есть линия, реализуемая уже в 1 классе - перенесение на числа (целые) основных свойств величины и операции сложения. В частности, работая на числовом луче, дети могут быстро претворить последовательность чисел в величину. Таким образом, обращение с числовым рядом как с величиной позволяет по-новому формировать сами навыки сложения и вычитания, и затем умножения - деления.

2.1. ОБУЧЕНИЕ В НАЧАЛЬНОЙ ШКОЛЕ С ТОЧКИ ЗРЕНИЯ ПОТРЕБНОСТЕЙ СРЕДНЕЙ ШКОЛЫ.

Как известно, при изучении математики в 5 классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Это повторение практически во всех учебниках занимает полторы учебной четверти. Учителя математики средней школы недовольны подготовкой выпускников начальной школы. В чём же причина такого положения? Для этого были проанализированы наиболее известные сегодня учебники математики начальной школы: это учебники авторов М.И Моро, И.И. Аргинской, Н.Б Истоминой, Л.Г.Петерсон, В.В.Давыдова, Б.П.Гейдмана.

Анализ этих учебников выявил несколько негативных моментов, в большей или меньшей степени присутствующих в каждом из них и отрицательно действующих на дальнейшее обучение. Прежде всего это то, что усвоение материала в них в большей мере основано на заучивании. Ярким примером этого служит заучивание таблицы умножения. В начальной школе её запоминанию уделяется много сил и времени. Но за время летних каникул дети её забывают. Причина такого быстрого забывания в механическом заучивании. Исследования Л.С. Выготского показали, что осмысленное запоминание гораздо эффективно, чем механическое, а проведённые эксперименты убедительно доказывают, что материал попадает в долговременную память только если он запомнен в результате работы, соответствующей этому материалу. При изучении материала в начальной школе опора делается на предметные действия и иллюстративную наглядность, что ведёт к формированию эмпирического мышления. Конечно, без подобной наглядности вряд ли можно совсем обойтись в начальной школею но она должна служить лишь иллюстрацией того или иного факта, а не основой для формирования понятия. Применение иллюстративной наглядности и предметных действий в учебниках нередко приводит к тому, что «размывается» само понятие. Например, в методике математики М.И.Моро говорится, что детям приходится выполнять деление, раскладывая предметы на кучки или делая рисунок на протяжении 30 уроков. За подобными действиями теряется сущность операции деления как действия, обратного умножению в результате деления усваивается с наибольшим трудом и значительно хуже, чем другие арифметические действия.

При обучении математике в начальной школе нигде не идёт речь о доказательстве каких- либо утверждений. Между тем, помня о том, какую трудность будет вызывать обучение доказательству в средней школе, начинать готовить к этому нужно уже в начальных классах. Причём сделать это можно на вполне доступном для младших школьников материале. Таким материалом,например, может служить правило деления числа на 1, нуля на число и числа на само себя. Дети вполне в состоянии доказать их, используя определение деления и соответствующие правила умножения.

Материал начальной школы также допускает и пропедевтику алгебры- работу с буквами и буквенными выражениями. Большинство учебников избегает использования букв. В результате четыре года дети работают практически только с числами, после чего, конечно, очень трудно приучаться к работе с буквами. однако обеспечить пропедевтику такой работы, научить детей подстановке числа вместо буквы в буквенном выражении можно уже в начальной школе. Это замечательно сделано, например, в учебнике Л.Г.Петерсон. С 1 класса буквенная символика вводится наряду с числами, а в некоторых случаях - опережая их. Все правила и выводы сопровождаются буквенным выражением. Например, урок 16 (1класс 2часть) по теме «Нуль» знакомит детей с вычитание нуля из числа и числа из самого себя и делает вывод следующей записью: а -0=а а-а=0

Урок 30 по теме «Задачи на сравнение» 1класс включает в себя работу с упражнениями на сравнение вида: а*а-3 в+4*в+5 с+0* с-0 д-1*д-2

Эти упражнения заставляют ребенка мыслить и искать доказательство выбранного решения.

2.2. СРАВНЕНИЕ (ПРОТИВОПОСТАВЛЕНИЕ) ПОНЯТИЙ НА УРОКАХ МАТЕМАТИКИ.

Действующая программа предусматривает изучение в 1классе лишь двух действий первой ступени_ сложения и вычитания. Ограничение первого года обучения лишь двумя действиями есть, по существу, отход от того, что было уже достигнуто в учебниках предшествовавших ныне действующим: ни один учитель никогда не жаловался тогда на то, что умножение и деление, скажем в пределах 20 непосильно для первоклассников. Достойно внимания ещё и то, что в школах других стран, где обучение начинается с 6лет, к первому учебному году относят начальное знакомство со всеми четырьмя действиями математики. Математика опирается прежде всего на четыре действия, и чем раньше они будут включены в практику мышления школьника, тем устойчивее и надежнее будет последующее развертывание курса математики.

В первых вариантах учебника М.И Моро для 1 класса предусматривалось умножение и деление. Однако авторы настойчиво держались за одну «новинку»- охват в 1классе всех случаев сложения и вычитания в пределах 100. Но, поскольку времени на изучение такого расширенного объема сведений не хватило, было решено сдвинуть умножение и деление полностью на следующий год обучения. Итак, увлечение линейностью программы, т.е. чисто количественным расширением знанием (те же самые действия, но с большими числами), заняло то время, которое ранее отводилось на качественное углубление знаний (изучение всех четырех действий в пределах двух десятков). Изучение умножения и деления уже в 1классе означает качественный скачок мышления, поскольку это позволяет освоить свёрнутые мыслительные процессы.

По традиции, раньше выделялось в особую тему изучение действий сложения и вычитания в пределах 20. Необходимость этого подхода в систематизации знаний видна даже из логического анализа вопроса: дело в том, что полная таблица сложения однозначных чисел развёртывается в пределах двух десятков (0+1=1… 9+9=18). Таким образом, числа в пределах 20 образуют в своих внутренних связях завершённую систему отношений; отсюда понятно целесообразность сохранения «20» в виде второй целостной темы (первая такая тема- действия в пределах первого десятка). Обсуждаемый случай- именно тот, когда концентричность (сохранение второго десятка в качестве особой темы) оказывается более выгодной, чем линейность (растворение второго десятка в теме «Сотня»).

В учебнике М.И Моро изучение первого десятка разделено на два изолированных раздела: сначала изучается состав чисел первого десятка, а в следующей теме рассматриваются действия в пределах десяти. Существуют экспериментальные учебники, где совместное изучение нумерации состава чисел и действий осуществляется в пределах 10 сразу в одном разделе (Эрдниев П.М.).

На первых занятиях учитель должен поставить перед собой цель научить школьника применять пары понятий, содержание которых раскрывается в процессе составления соответствующих предложений с этими словами: больше- меньше, длиннее- короче, выше- ниже, тяжелее- легче, толще- тоньше, правее- левее, дальше- ближе и т.д. При работе над парами понятий важно использовать и наблюдения детей. Обучение процессу сравнения можно сделать более интересным, вводя так называемые табличные упражнения. Здесь разъясняется смысл понятий «столбец» , «строка». Вводится понятие левый столбец и правый столбец, верхняя строка и нижняя строка. Вместе с детьми показываем смысловое толкование этих понятий. Подобные упражнения постепенно приучают детей к пространственной ориентировке и имеют важное значение при изучении в последствии координатного метода математики. Большое значение для первых уроков имеет работа над числовым рядом. Рост числового ряда прибавлением по единице удобно иллюстрировать перемещением вправо по числовому лучу. Если знак (+) связывается с перемещением по числовому лучу вправо на единицу, то знак (-) связывается с обратным перемещением влево на единицу. (Поэтому оба знака показываем одновременно на одном уроке). Работая над числовым рядом, вводим понятия: начало числового ряда(число нуль) представляет левый конец луча; числу 1 соответствует единичный отрезок, который надо изобразить отдельно от числового ряда. Дети работают в пределах трех с числовым лучом. Выделяем два соседних числа 2 и 3. Переходя от числа 2 к числу 3, дети рассуждают так: «За числом 2 следует число 3». Переходя от числа 3 к числу 2, они говорят: «Перед числом 3 идёт число 2» или «Число 2 предшествует числу 3». Такой метод позволяет определить место данного числа по отношению как к предыдущему, так и к последующему числу; уместно тут же обратить внимание на относительность положения числа, например, число 3 одновременно является как последующим(за числом 2), так и предыдущим (перед числом 4). Указанные переходы по числовому ряду надо связать с соответствующими арифметическими действиями. Например, фраза «За число 2 следует число3» изображается символически так: 2+1=3; однако психологически выгодно создать противоположную связь: «Перед числом 3 идёт число 2» и запись: 3-1=2. Чтобы добиться понимания места какого- либо числа в числовом ряду, следует предлагать парные вопросы:

1)За каким числом следует число 3? Перед каким числом расположено число 2?

2)какое число следует за числом 2? Какое число идёт перед числом 3? И т.д.

Работу с числовым рядом удобно сочетать со сравнением чисел по величине, а также со сравнением положения чисел на числовой прямой. Постепенно вырабатываются связи суждений геометрического характера: число4 находится на числовой прямой правее числа 3; значит 4 больше 3. И наоборот: число 3 находится левее числа 4, значит число 3 меньше числа 4. Так устанавливается связь между парами понятий: правее- больше, левее- меньше.

Из выше изложенного мы видим черту укрупненного усвоения знаний: весь набор понятий, связанных со сложением и вычитанием, предлагается совместно, в непрерывных переходах друг в друга. Опыт обучения показывает преимущества одновременного введения пар взаимно противоположных понятий, начиная с самых первых уроков. Так,например, одновременное употребление трех глаголов: «прибавить (к 2 прибавить 1), «сложить» (число 2 сложить с числом 1), которые изображаются символически одинаково (2+1=3), помогает детям усвоить сходство, близость этих слов по смыслу(подобные рассуждения можно произвести относительно слов «отнять», «вычесть», «уменьшить».

Многолетние испытания показали преимущества монографического изучения чисел первого десятка. Каждое очередное число при этом подвергается многостороннему анализу, с перебором всех возможных вариантов его образования; в пределах этого числа выполняются все возможные действия, повторяется «вся математика», используются все допустимые грамматические формы выражения зависимости между числами. Разумеется, при этой системе изучения в связи с охватом последующих чисел повторяются ранее изученные примеры, т.е. расширение числового ряда осуществляется с постоянным повторением ранее рассмотренных сочетаний чисел и разновидностей простых задач.

2.3. СОВМЕСТНОЕ ИЗУЧЕНИЕ СЛОЖЕНИЯ И ВЫЧИТАНИЯ, УМНОЖЕНИЯ И ДЕЛЕНИЯ.

В методике начальной математики упражнения на эти две операции обычно рассматриваются раздельно. Но одновременное изучение двуединой операции «сложение- разложение на слагаемые» является более предпочтительным. Такую работу можно построить следующим образом. Пусть дети решили задачу на сложение: «К 3палочкам прибавить 1палочку- получится 4палочки». Вслед за ней сразу же ставим вопрос: «Из каких чисел состоит число 4?» 4палочки состоят из 3 палочек (ребёнок отсчитывает 3палочки) и 1палочки (отделяет ещё 1палочку). Исходным упражнением может быть и разложение числа. Учитель задает вопрос: «Из каких чисел состоит число 5?»(число 5 состоит из 3 и 2). И тотчас же предлагается вопрос про те же числа: «Сколько получится, если к 3 прибавить 2?»(к 3 прибавить 2 получится 5). Для этой же цели полезно практиковать чтение примеров в двух направлениях: 5+2=7. К пяти прибавить два получится семь. (читаем слева направо).7 состоит из слагаемых 2 и 5.(читаем справа налево). Словесное противопоставление полезно сопровождать такими упражнениями на классных счётах, которые позволяют видеть конкретное содержание соответствующих операций. Вычисление на счётах незаменимы как средство визуализации действий над числами, причём величина числа в пределах 10 здесь ассоциируется с длиной совокупности косточек на одной проволоке(эта длина воспринимается учеником зрительно. Так при решении примера на сложение (5+2=7) ученик сначала отсчитывал на счётах 5 косточек, затем к ним присчитывал 2 и после этого объявлял сумму: «К 5 прибавить 2- получится 7» (название полученного числа 7 при этом ученик устанавливает путём пересчёта новой совокупности: 1-2-3-4-5-6-7).

Ученик: К 5 прибавить 2 -получится 7.

Учитель: Покажи, из каких слагаемых состоит число 7?

Ученик отделяет 2 косточки вправо. Число 7- это 2 и 5. Выполняя данные упражнения, целесообразно употреблять с самого начала понятие «первое слагаемое» (5), «второе слагаемое» (2), «сумма» (7). Предлагаются задания следующих видов:

а) сумма двух слагаемых равна 7, найди их;

в) из каких слагаемых состоит число 7;

в) разложите сумму 7 на 2 слагаемых, 3, и т.п.

Усвоение такого важного алгебраического понятия, как переместительный закон сложения, требует разнообразных упражнений, основанных вначале на практических манипуляциях с предметами.

Учитель: Возьмите в левую руку 3 палочки, а в правую- 2. Сколько всего палочек?

Ученик: Всего стало 5 палочек.

Учитель: Как подробнее сказать об этом?

Ученик: К 2 палочкам прибавить 2 – будет 5 палочек.

Учитель: Составьте этот пример из разрезных цифр. (ученик составляет пример из цифр).

Учитель: А теперь поменяйте местами палочки: из левой переложите в правую, а из правой- в левую. Сколько теперь палочек в двух руках вместе?

Ученик: Всего в двух руках было 5, и сейчас получилось снова 5.

Учитель: Почему так получилось?

Ученик: Потому что мы никуда не откладывали и не добавляли палочки. Сколько было, столько и осталось.

Переместительный закон усваивается также в упражнениях на разложение числа на слагаемые. Когда вводить переместительный закон? Главная цель обучения сложению- уже в пределах первого десятка- постоянно подчёркивать роль переместительного закона в упражнениях. Пусть дети отсчитывают 6 палочек, затем к ним прибавляют 3 палочки и пересчётом(семь- восемь- девять) устанавливают сумму: 6 да 3 будет 9. Предлагаем сразу новый пример: 3+6: новую сумму можно установить путем пересчета, но постепенно и целенаправленно следует формировать способ решения на высшем коде, т.е. логически, без пересчёта. Если 6 да 3 будет 9 (ответ пересчитан), то 3 да 6 (без пересчёта) будет 9.

Л.Г.Петерсон вводит такой способ уже на 13 уроке, где дети решают четыре выражения в буквенной символике (Т+К=Ф К+Т=Ф Ф-Т=К Ф-К=Т), а затем в числовой форме: 2+1=3 1+2=3 3-2=1 3-1+2.

Составление четверки примеров- это доступное детям средство укрупнения знаний. Мы видим, что характеристика операции сложения не должна пройти эпизодически, а должна стать основным логическим средством упрочения верных числовых ассоциаций. Главное свойство сложения- переместительность слагаемых- должно рассматриваться постоянно в связи с накоплением в памяти все новых табличных результатов. Мы видим: взаимосвязь более сложных вычислительных или логических операций, посредством которых выполняется пара «сложных операций». Явное противопоставление сложных понятий основано на неявном противопоставлении более простых понятий.

Первоначальное изучение умножения и деления целесообразно осуществлять в следующей последовательности трех циклов задач(по 3 задачи в каждом цикле):

1 а), б) умножение при постоянном множимом и деление по содержанию (совместно); в) деление на равные части.

2 а), б) уменьшение и увеличение числа в несколько раз (совместно), в) кратное сравнение;

3 а), б) нахождение одной части числа и числа по величине одной его части (совместно) в) решение задачи «Какую часть составляет одно число от другого?». Одновременное изучение умножения и деления по содержанию. На 2-3 уроках, посвящённых умножению, выясняется смысл понятия умножения как свёрнутого сложения равных слагаемых. Обычно учащимся показывается запись по замене сложения умножением:2+2+2+2=8 2*4=8 Здесь связь между сложением и умножением. Уместно предложить сразу упражнение, рассчитанное на появление обратной связи «умножение- сложение». Рассматривая эту запись, ученик должен понять, что требуется число 2 повторять слагаемым столько раз, сколько показывает множитель в примере 2*4=8. Сочетание обоих видов упражнения есть одно из важных условий, обеспечивающих сознательное усвоение понятия «умножение». Очень важно показать к каждому из соответствующих случаев умножения соответствующий случай деления. В дальнейшем умножение и деление по содержанию выгодно рассматривать совместно.

При введении понятия деления необходимо вспомнить соответствующие случаи умножения, чтобы оттолкнувшись от них, создать понятие о новом действии, обратном умножению. Стало быть, понятие «умножение» приобретает богатое содержание, оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое, в свою очередь представляет «свёрнутое вычитание», заменяющее последовательное «вычитание по 2». Смысл умножения постигается не столько при самом умножении, сколько при постоянных переходах между умножением и делением, так как деление есть завуалированное, «изменённое» умножение. Все логические операции, подкрепляемые практической деятельностью, должны быть хорошо продуманы. Результатом работы будут таблицы умножения и деления:

По 2*2=4 4:по 2 =2

2*3=6 6:по 2=3

2*4=8 8:по 2=4 и т.д.

Таблица умножения строится по постоянному 1множителю, а таблица деления- по постоянному делителю. Изучение деления на равные части вводится после изучения умножения и деления на 2. Даётся задача: «Четыре ученика принесли по 2 тетради. Сколько всего тетрадей принесли?» выполняя практическое действие, мы собираем тетради (по 2 тетради взять 4раза). Составим обратную задачу: «8 тетрадей раздали по 2 тетради каждому ученику». Получится 4. Запись появляется по 2т.*4=8т., 8т.: по 2т.=4уч. На первых порах полезно подробно записывать наименования. Теперь составляем 3задачу: «8тетрадей надо раздать поровну 4ученикам. По сколько тетрадей достанется каждому?» вначале деление на равные части также следует демонстрировать на предметах. Стало быть, понятие «умножение» приобретает богатое содержание: оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое в свою очередь представляет свёрнутое вычитание, заменяющее последовательное «вычитание по 2». Очень удачно в этом случае построено объяснение в учебниках математики Л.Г.Петерсон и Н.Б.Истоминой. новое понятие вводится в обучение деятельностным методом, т.е. дети сами «открывают» его содержание, а учитель направляет их исследовательскую деятельность и знакомит с общепринятой терминологией и символикой. Вначале дети повторяют смысл умножения, составляют по рисунку произведение 2*4=8. Изучение действий деления мотивируется повседневной практической деятельностью детей. Учитель спрашивает, приходилось ли в жизни делить что-то поровну, и предлагает задачу: «Надо разделить 36конфет поровну на четверых. По сколько дать каждому?» затруднение, которое возникает в связи с ответом на вопрос задачи, мотивирует проведение исследования с помощью предметных моделей. У каждого на партах заготовлено 36 предметов (пуговиц, фигур, жетонов и т.д.). Их раскладывают на 4 равные по количеству кучки и т.д. Учитель показывает запись _- разделить на равные части- это значит найти число предметов в каждой части. Выполняя ряд упражнений, дети приходят к выводу, что операция деления обратна операции умножения. При делении орехов на 4 получается такое число 2, которое при умножении на 4 даёт нам 8. 8:4=2 2*4=8. О знаке детям можно сказать, что его используют в математике для обозначения предложений, выражающих одно и тоже (равносильное предложение). Выполняя упражнения на закрепление, дети выполняют рисунки и рисуют опорные схемы.

В конце урока делается вывод и проговариваются вслух и распространяются на общий случай деления- чтобы разделить число а на число в надо подобрать такое число с, которое при умножении на в даёт а:

А:В=С С*В=А и составляется опорный конспект. Важно донести до детей, что математические выражения, формулы позволяют выявить общие закономерности и установить аналогию совершенно различных на первый взгляд явлений. Осознание этого факта поможет учащимся в дальнейшем понять целесообразность математических обобщений, роль и место математики в системе наук.

ГЛАВА 3. ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА ПО ИЗУЧЕНИЮ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА НА УРОКАХ МАТЕМАТИКИ В НАЧАЛЬНЫХ КЛАССАХ МОУ СОШ №72 С УГЛУБЛЕЕНЫМ ИЗУЧЕНИЕМ ОТДЕЛЬНЫХ ПРЕДМЕТОВ.

3.1. ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ (ТЕХНОЛОГИЯ УДЕ).

В своей работе успешно применяю технологию укрупнения дидактических единиц (УДЕ), разработанную П.Т.Эрдниевым. автор более 30 лет назад выдвинул научное понятие «дидактическая единица». Его система укрупнения дидактических единиц в начальной школе вооружает школьников алгоритмом творческого освоения учебной информации. Эта технология актуальна и перспективна, так как обладает силой дальнодействия, закладывает в ребенке черты интеллекта, способствует становлению активной личности.

П.М.Эрдниев выделяет четыре основных способа укрупнения дидактических единиц:

1)совместное и одновременное изучение взаимосвязанных действий, операций;

2)применение деформированных упражнений;

3)широкое использование метода обратной задачи;

4)усиление удельного веса творческих заданий.

Каждый из способов способствует актуализации резервов мышления. Первый способ - совместное изучение взаимосвязанных действий, операций- сложение- вычитание, умножение- деление. В первом классе, изучая первый десяток, дети знакомятся с примерами вида: 3+4=7 по технологии укрупнения дидактических единиц знакомлю с переместительным свойством сложения: 4+3=7 ответ одинаков, запись приобретает вид: 3+4= 7

Детям предлагаю примеры на вычитание, а запись имеет вид: 7 -3=4

4=3. Обобщаются и объединяются знания и записи сводятся вместе. Аналогично можно построить работу на умножение и деление. Например: 8+8+8+8+8=40 8*5=40 5*8=40 40:5=8 40:8=5

Дети приучаются различать противоположные понятия и операции при одновременном изучении сопряжённых действий. «Нервные привычки», по К.Д.Ушинскому, закрепляются у человека не отдельно, а парами, рядами, вереницами, группами. Такая подача материала создает условия для развития самостоятельности и инициативы детей.

Второй способ укрупнения дидактических единиц- метод деформированных упражнений, в которых искомым является не один, а несколько элементов. Например, в первом классе можно предложить задание, где нужно определить знак действия и неизвестный компонент:8 =2. В таких примерах ученик сначала подбирает знак действия на основе сравнения, а затем находит отсутствующий компонент. Решая такой пример, ребенок рассуждает так: 8 2, значит знак «минус».8 состоит из 2 и 6, значит пример 8-6=2. Так активизируется внимание, развивается мышление учащихся на основе решения логических цепочек.

Третий способ укрупнения дидактических единиц- решение прямой задачи и преобразование её в обратные и аналогичные. Решение задач в начальной школе имеет центральное значение для развития мышления учащихся: при решении дети знакомятся с зависимостью величин, с различными сторонами жизни, учатся думать, рассуждать, сравнивать. Обучая решению задач, необходимо учить детей составлять обратные задачи. В основе каждого способа лежит великий информационный закон живой природы - закон обратной связи. При работе над задачами выгодно пользоваться, когда в серии задач последующая отличается от предыдущей лишь каким-то одним элементом. В этом случае переход от одной задачи к другой облегчается, и информация, полученная при решении предыдущей задачи, помогает в поиске решения последующих задач. Особенно полезен этот приём слабым и медлительным детям. Например, задача на нахождение суммы, составим обратные ей задачи. «Отец дал Маше 11яблок, а мама добавила еще 5яблок. Сколько всего яблок дали Маше родители?»

  1. Проводим анализ по вопросам: «Что известно в задаче? Что нужно узнать?» Запись задачи кратко. Как узнать, сколько яблок дали Маше родители? (12+5=17)
  2. Составление обратной задачи, где неизвестным будет количество яблок, данных отцом. «Отец дал несколько яблок, а мама добавила ещё 5яблок. Всего у Маши стало 17яблок. Сколько яблок дал Маше отец?»
  3. Можно составить ещё одну обратную задачу, где неизвестным будет количество яблок, данных Маше мамой. «Отец дал Маше 12яблок, а мама добавила ещё несколько яблок. Всего у Маши стало 17яблок. Сколько яблок дала мама Маше?» (17-12=5). В тетрадях ведём краткие записи по всем 3задачам. Взаимосвязанные задачи сливаются в группу родственных задач как крупную единицу усвоения и образуют три задачи. Итак, главная технологическая новизна системы укрупнения дидактических единиц заключается в наличии заданий, по которым школьник упражняется в самостоятельном составлении обратных задач на основе анализа условия прямой задачи, выявление логической цепи.

Четвертый способ укрупнения- усиление удельного веса творческих заданий. Например, дается задание с «окошком»: +7-50=20. Дети ищут ответ методом подбора, но можно решить это задание, рассуждая по стрелке, используя обратную операцию: 20+59-7=63. Искомое число 63. Творческие задания должны присутствовать на каждом уроке. С помощью таких упражнений ребёнок приучается к самостоятельному продолжению мысли, к перестройке суждения, что имеет решающее значение в последующем для составления активного, творческого ума человека, столь ценного в своем проявлении в любой сфере трудовой деятельности.

3.2.ОБ ОПЫТЕ ОЗНАКОМЛЕНИЯ С АЛГЕБРАИЧЕСКИМИ ПОНЯТИЯМИ.

Уже в 1классе учу детей самостоятельно устанавливать признаки, по которым можно сравнивать те или иные предметы. Учитель показывает детям 2гири разного цвета. «По каким признакам их можно сравнивать?» Дети дают ответ: «Их можно сравнивать по весу, высоте, по донышку». Что же можно сказать?- они неравны (по весу, высоте). Как это выразить точнее?- чёрная гиря тяжелее, больше, толще. Что значит тяжелее?- Тяжелее, больше по весу. Аналогичная работа при наводящих вопросах проводится и по отношению к другим признакам. Вместе с учителем устанавливаем, что тяжелее- это больше по весу, «длиннее»- это больше по длине(росту, высоте) и т.д. заключением этой работы было выяснение того, что если можно найти признак, по которому предметы сравниваются, то они будут либо равными, либо неравными. Это можно записать особыми знаками «=» и «=». Л.Г.Петерсон очень удачно сопоставляет эти понятия, а уже потом знаки уточняются -меньше или больше. Дети очень охотно решают эти неравенства. Выполняем и обратные задания - по знакам «меньше» или «больше» подбираются разные предметы. При этом сразу возникает своеобразная задача- определение понятий «слева направо»- 5 меньше 10. Кроме этого, удачно получается записывать не только числами, но и разными фигурами, линиями. В этот период на этой основе вводится буквенная форма записи. Работая с разного рода заданиями, необходимо дать детям понятие, что сами по себе буквы результата сравнения не записывают- нужен связующий их знак. И лишь вся формула говорит об этом результате- сравнение веса, длины 2х предметов и более.

Работа по данной теме имеет первостепенное значение для развёртывания всего начального раздела математики, так как по существу связана с построением в деятельности ребёнка системы отношений, выделяющих величины как основу дальнейших преобразований. Буквенные формулы, заменяющие ряд предварительных способов записи, впервые превращают эти отношения в абстракцию, ибо сами буквы обозначают любые конкретные значения любых конкретных величин, а вся формула- любые, возможные отношения равенства или неравенства этих значений. Теперь, опираясь на формулы, можно изучать собственные свойства выделенных отношений, превращая их в особый предмет анализа.

  1. ДИАГНОСТИКА РЕЗУЛЬТАТОВ ОБУЧЕНИЯ МАТЕМАТИКЕ.

Значение диагностики велико, так как с её помощью устанавливается соответствие достижений ребенка обязательным требованиям к результатам обучения. Анализируя итоги, можно сделать выводы, какие изменения происходят с ребенком в процессе обучения, почему не удалось научить, что не учтено, как скорректировать процесс обучения, в какой помощи ученик нуждается. Инструментом диагностики могут служить тесты. По каждой содержательной линии в соответствии с обязательным минимумом содержания начального образования составляются тестовые задания, также широко представлены такие тесты в готовых печатных изданиях. Они помогают выявить пробелы в обучении. В своем классе были выявлены следующие проблемы в изучении элементов алгебры:

Часть учащихся испытывают некоторые затруднения при решении буквенных выражений (нахождение числового значения буквенного выражения при заданных значениях входящих в него букв);

При решении уравнений допускаются ошибки на использовании правил нахождения неизвестных компонентов (зависимость между компонентами сложения, вычитания, умножения и деления);

При проверке корней уравнения часть детей не просчитывают левую часть уравнения, а автоматически ставят знак равно;

При более сложной структуре уравнений вида X+10=30-7 или X+(45-17)=40 при преобразовании и упрощении уравнения некоторые дети теряют переменную, увлекаясь арифметическими вычислениями.

Получив данные тестов и проанализировав итоги, делаю для себя план работы для корректировки пробелов и недоработок.

Примерный тест для проверки знаний учащихся.

  1. Дополни до 10 9, 5, 8, 4, 7, 0.
  2. Впиши число в карточку: 8+5 17-9

8+2+ 17-7-

  1. Догадайся, какое число надо записать в карточку:

3, 6, 9, 12, * А(13), В(15), С(18), Г(другое число)

  1. Впиши в карточку такое число, чтобы равенство было верным:

9=17-* А(6), В(15), С(4), Г (другое число)

  1. . 8+7=19-* А(3), В(15), С(4), Г(другое число).

6 Укажи верные равенства:

А) 12+1=11 В)14-5=9 С)17+3=20 Д)20-1=9 Е)18+2=20 Ж)8-5=13 З)6+9=15

7. Расположи выражения в порядке уменьшения их значений: А)7-5 В)7+6 С)3+7

8. Какими цифрами можно заменить *?

1)12 1* А(0, 1, 2) В(3, 4, 5, 6, 7, 8, 9) С(0, 1)

9. Где правильно расставлен порядок выполнения действий? А) 12-3+7 В) 19-9-5+3

10.Запиши числовые выражения и найди значения: из числа 12 вычесть сумму чисел 3 и 5

А) (3+5)-12 В) 12-3+5 С) 12-(3+5) Г) другое ответ:

Данный тест показывает, кто из детей недостаточно чётко усвоил нумерацию чисел второго десятка. Это дети, получившие меньше 18 баллов. С ними нужно проводить коррекционную работу, которая включает в себя все возможные случаи использования полученных знаний, где дети ориентируются в аналогичных упражнениях достаточно хорошо. Намечается план работы с родителями данных детей и оказывается консультация для тех родителей, кому это необходимо. В итоговой диагностике проверяются знания всего курса обучения за 1класс. Я провожу с ними ещё одну работу по проверке усвоения сложения и вычитания чисел в пределах 20, а потом и 100. Дети должны уметь выполнять действия с использованием изученных приёмов: находить неизвестный компонент сложения и вычитания, сравнивать числа и числовые выражения, уметь находить обратное действие. Что касается программ других авторов, то можно наблюдать, что раннее введение алгебраического материала вполне приемлемо для всех детей. Проработав разные программы, изучив методики преподавания разных авторов математики, я использую все нужные мне элементы из любого учебника, чтобы урок был более эффективным и продуктивным. Интересные упражнения, которые развивают мышление, логику, учат думать, изобретать, комбинировать включаю в каждый урок математики. Мои дети любимым предметом выбирают математику. Выявить пробелы в знаниях помогает использование тетрадей на печатной основе, проверочные тесты.

При изучении всех содержательных линий математики проводится постоянное отслеживание результатов обучения и ведется диагностику преподавания. Дети постоянно выполняют промежуточные тесты и проверочные работы, поэтому легко идет контроль за успеваемостью учащихся.

В начальной школе при безотметочном обучении (1-2кл.) использую следующие уровни и критерии сформированности знаний алгебраического материала: высокий уровень(20-25 баллов)- при таком уровне ребенок осознанно владеет изученным материалом, понятия по теме усвоены, умеет самостоятельно работать по теме, задания выполняет без ошибок;

средний уровень (14- 9 баллов)- тема усвоена, умеет ответить на косвенные вопросы, с помощью наводящих вопросов правильно отвечает по теме, допускает 1-2 ошибки, находит их и самостоятельно исправляет;

низкий уровень (менее 14 баллов)- допускает ошибки в большинстве заданий, отвечает на прямой вопрос учителя не всегда правильно, необходимы коррекционные упражнения и дополнительная индивидуальная работа.

Также при обработке диагностических работ провожу поэлементный анализ результатов теста: ошибки и причины их возникновения. При решении уравнений (в процессе поиска числа, при подстановке которого уравнение превращается в верное числовое равенство) возможны и случаются следующие ошибки:

В выборе арифметического действия при нахождении неизвестного компонента (причина такой ошибки- неумение определить зависимость между компонентами или незнание данного материала);

Вычислительные ошибки (причины в использовании алгоритмов сложения, вычитания, умножении и деления, не проведен подробный анализ на каком-то этапе алгоритма).

При решении буквенных выражений при заданных значениях входящих в него букв допускаются следующие ошибки:

При использовании алгоритмов (конкретные вычислительные приёмы);

При конкретном выборе данного значения буквы (невнимательность, не проведен анализ соответствия данной букве определённого числа).

При сравнении чисел и числовых выражений ошибаются:

В постановке знаков больше и меньше (причина в незнании конкретных понятий, не проанализирован поразрядный и поклассовый состав чисел, незнание нумерации натуральных чисел, поместное значение цифр);

В арифметических вычислениях.

При нахождении значения составного числового выражения допускаются ошибки:

В порядке действий,

В неправильной записи компонентов действия (причина ошибок - не сумел определить структуру исходного выражения и соответственно применить необходимое правило, не знал алгоритма выполнения действий). При тщательном анализе результатов контроля знаний, умений, навыков учитель выявляет пробелы, ошибки в выполнениях, правильно можно спланировать дальнейшую работу по ликвидации недостатков в обучении.

Ниже привожу примеры тестов и диагностику проведённых срезов и проверок.

Номер теста

Формируемые умения и навыки

10-11

Счёт в пределах 20, 100.

Таблица сложения и вычитания.

Нахождение значения числового выражения в 2-4действия.

Чтение, запись, сравнение в пределах 100.

Название и обозначение действий сложения и вычитания.

Решение задач в 1-2 действия.

Умение сравнивать, классифицировать.

Пространственные представления.

Знание величин.

Уровень сформированности базовых навыков и математического развития.

Результаты итоговой диагностики за 1 класс

10-11

уровень

Антонов А.

Батраева Д.

Башловкин Д.

Белова В.

Бобылёва Е.

Габриелян Г.

Гасникова М.

Горошко А.

Гузаева Е.

Двугрошева М.

Кондратьев Д.

Константинов И.

Копылов В.

Михайлова В.

Михайлова И.

Морозова А.

Подгорный И.

Разин Н.

Романов Д.

Синицына К.

Сулейманов Р.

Сульёзнов А.

Теплякова Ю.

Фролов Д.

Ширшаева К.

Низкий

Низкий

Средний

Средний

Высокий

Средний

Средний

Высокий

Высокий

Низкий

Высокий

Высокий

Высокий

Высокий

Средний

Высокий

Низкий

Средний

Средний

Высокий

Высокий

Средний

Средний

Средний

средний

Проверка уровня развития памяти

слуховая

зрительная

моторная

Зрительно-слуховая

Антонов А.

Батраева Д.

Башловкин Д.

Белова В.

Бобылёва Е.

Габриелян Г.

Гасникова М.

Горошко А.

Гузаева Е.

Двугрошева М.

Кондратьев Д.

Константинов И.

Копылов В.

Михайлова В.

Михайлова И.

Морозова А.

Подгорный И.

Разин Н.

Романов Д.

Синицына К.

Сулейманов Р.

Сульёзнов А.

Теплякова Ю.

Фролов Д.

Ширшаева К.

0, 4 средний

0,2 низкий

0,6 средний

0,8средний

1 высокий

0,7 средний

0,7 средний

1 высокий

1 высокий

0,5 низкий

1 высокий

1 высокий

1 высокий

1 высокий

0,9 средний

1 высокий

0,4 низкий

0,7 средний

0,7 средний

1 высокий

1 высокий

0,7 средний

1 высокий

0,7 средний

0,6 средний

0,4 низкий

0,3 низкий

0,8 средний

0,9 средний

1 высокий

0,6 средний

1 высокий

1 высокий

1 высокий

0,4низкий

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

0,4низкий

0,9средний

1 высокий

1 высокий

1 высокий

0,8средний

0,9средний

0,9 средний

0,8средний

0,8 средний

0,4 низкий

1 высокий

1 высокий

1 высокий

0,9средний

1 высокий

1 высокий

1 высокий

0,8средний

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

0,5низкий

0,8средний

0,7 средний

1 высокий

0,9 средний

0,8средний

1 высокий

0,8средний

0,5низкий

0,7 средний

0,4 низкий

0,9 средний

0,9 средний

  1. высокий

0,8 средний

0,9 средний

  1. высокий
  1. высокий

0,5 низкий

  1. высокий
  1. высокий
  1. высокий
  1. высокий
  1. высокий
  1. высокий

0,4 низкий

0,9 средний

0,9 средний

  1. высокий
  1. высокий

0,8 средний

0,9 средний

0,8 средний

0,5 средний

С=а:N С- коэффициент памяти, при С=1 – оптимальный вариант- высокий уровень

С=0,7 +/-0,2 - средний уровень, С -меньше 0,5 –низкий уровень развития

ЗАКЛЮЧЕНИЕ

В настоящее время возникли достаточно благоприятные условия для коренного улучшения постановки математического образования в начальной школе:

  1. начальная школа из трехлетней преобразована в четырехлетнюю;
  2. на изучение математики в первые четыре года выделяется часов, т.е. 40% всего времени, отводимого этому предмету за всю среднюю школу?
  3. Учителями начальных классов работает с каждым годом все большее число лиц, имеющих высшее образование;
  4. Возросли возможности лучшего обеспечения учителей и школьников учебно-наглядными пособиями, большая часть их выпускается в цветном изображении.

Нет необходимости доказывать решающую роль начального обучения математике для развития интеллекта ученика вообще. Богатство разнообразных ассоциаций, обретаемых школьником за первые четыре года обучения, при правильной постановке дела становится главным условием самонаращивания знаний в последующие годы. Если этот запас исходных представлений и понятий, ходов мыслей, основных логических приёмов будет неполон, негибок, обеднён, то при переходе в старшие классы школьники будут постоянно испытывать трудности, независимо от того, кто их будет учить дальше или по каким учебникам они будут учиться.

Как известно, начальная школа функционирует в нашей и других странах много веков, поэтому теория и практика начального обучения гораздо богаче своими традициями, чем обучение в старших классах.

Драгоценные методические находки и обобщения по начальному обучению математике были сделаны ещё Л.Н.Толстым, К.Д.Ушинским, В.А.Латышевым и другими методистами уже в прошлом веке. Значительные результаты были получены в последние десятилетия по методике начальной математики в лабораториях Л.В.Занкова, А.С.Пчелко, а также в исследованиях по укрупнению дидактических единиц.

При разумном учёте наличных научных результатов, полученных в последние 20 лет по методике начального обучения различными творческими коллективами, сейчас имеется полная возможность добиться в начальной школе «учения с увлечением». В частности, знакомство учащихся с базовым алгебраическими понятиями, несомненно, положительно скажется на освоении учащимися соответствующих знаний в старших классах.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1. Актуальные проблемы методики обучения математике в начальных классах./под ред. М.И.Моро, А.М.Пышкало. -М.: Педагогика, 1977.
  2. И.И.Аргинская, Е.А.Ивановская. Математика: Учебник для 1,2,3,4 класса четырехлетней начальной школы.- Самара: Изд. дом «Федоров», 2000.
  3. М.А.Бантова, Г.В.Бельтюкова. Методика преподавания математики в начальных классах.- М.: Педагогика,1984.
  4. П.М.Эрдниев. Укрупненные знания как условие радостного обучения./ Начальная школа.- 1999 №11, с.4-11.
  5. В.В.Давыдов. Психическое развитие в младшем школьном возрасте./ Под ред. А.В.Петровского.- М.: Педагогика, 1973.
  6. А.З.Зак. Развитие умственных способностей младших школьников.
  7. И.М.Доронина. Использование методики УДЕ на уроках математики. //Начальная школа.-2000, №11, с.29-30.
  8. Н.Б.Истомина. Методика обучения математике в начальных классах.- М.: Издательский центр «Академия», 1998.
  9. М.И.Волошкина. Активизация познавательной деятельности младших школьников на уроке математики.//Начальная школа-1992 №10.
  10. В.Ф.Коган. О свойствах математических понятий. -М. : Наука, 1984.
  11. Г.А.Пентегова. Развитие логического мышления на уроках математики. //Начальная школа.-2000.-№11.
  12. А.Н.Колмогоров. О профессии математика. М.-Педагогика. 1962.
  13. М.И.Моро, А.М.Пышкало. Методика обучения математике в начальной школе.- М.Педагогика,1980 .
  14. Л.Г. Петерсон. Математика 1-4классы.-Методические рекомендации для учителя -М.: «Баллас»,2005.
  15. Диагностика результатов образовательного процесса в 4-летней начальной школе: Учебно-методическое пособие /Под ред. Калининой Н.В./ Ульяновск: УИПКПРО, 2002.
  16. Самостоятельные и контрольные работы для начальной школы (-4). М.-«Баллас»,2005.
  17. Ж. Пиаже. Избранные психологические труды. СП-б.: Изд-во «Питер»,1999.
  18. А.В. Сергеенко. Преподавание математики за рубежом.- М.: Академия, 1998.
  19. Стойлова Л.П. Математика. М.- Академия, 2000.
  20. У.У.Сойер Прелюдия к математике, М.-Просвещение.1982.
  21. Тесты: Начальная школа.1,2,3,4кл.: Учебно-методическое пособие/Л.М.Зеленина, Т.Е.Хохлова, М.Н.Быстрова и др.-2-е изд., стереотип.- М.:Дрофа,2004.

Введение… 2

Глава I. Общетеоретические аспекты изучения алгебраического материала в начальной школе… 7

1.1 Опыт введения элементов алгебры в начальной школе… 7

1.2 Психологические основы введения алгебраических понятий

в начальной школе… 12

1.3 Проблема происхождения алгебраических понятий и ее значение

для построения учебного предмета… 20

2.1 Обучение в начальной школе с точки зрения потребностей

средней школы… 33

2.1 Сравнение (противопоставление) понятий на уроках математики… 38

2.3 Совместное изучение сложения и вычитания, умножения и деления 48

Глава III. Практика изучения алгебраического материала на уроках математики в начальных классах средней школы № 4 г. Рыльска… 55

3.1 Обоснование использования инновационных технологий (технологии

укрупнения дидактических единиц)… 55

3.2 Об опыте ознакомления с алгебраическими понятиями в I классе… 61

3.3 Обучение решению задач, связанных с движением тел… 72

Заключение… 76

Библиографический список… 79

В любой современной системе общего образования математика занимает одно из центральных мест, что несомненно говорит об уникальности этой области знаний.

Что представляет собой современная математика? Зачем она нужна? Эти и подобные им вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребенка и его образовательных потребностей.

Часто говорят, что математика - это язык современной науки. Однако, представляется, что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому что математика к нему не сводится.

Выдающийся отечественный математик А.Н. Колмогоров писал: «Математика не просто один из языков. Математика - это язык плюс рассуждения, это как бы язык и логика вместе. Математика - орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим. … Очевидные сложности природы с ее странными законами и правилами, каждое из которых допускает отдельное очень подробное объяснение, на самом деле тесно связаны. Однако, если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому » (, с. 44).

Таким образом, математика позволяет сформировать определенные формы мышления, необходимые для изучения окружающего нас мира.

В настоящее время все более ощутимой становится диспропорция между степенью наших познаний природы и пониманием человека, его психики, процессов мышления. У. У. Сойер в книге «Прелюдия к математике» (, с. 7) отмечает: «Можно научить учеников решать достаточно много типов задач, но подлинное удовлетворение придет лишь тогда, когда мы сумеем передать нашим воспитанникам не просто знания, а гибкость ума», которая дала бы им возможность в дальнейшем не только самостоятельно решать, но и ставить перед собой новые задачи.

Конечно, здесь существуют определенные границы, о которых нельзя забывать: многое определяется врожденными способностями, талантом. Однако, можно отметить целый набор факторов, зависящих от образования и воспитания. Это делает чрезвычайно важной правильную оценку огромных неиспользованных еще возможностей образования в целом и математического образования в частности.

В последние годы наметилась устойчивая тенденция проникновения математических методов в такие науки как история, филология, не говоря уже о лингвистике и психологии. Поэтому круг лиц, которые в своей последующей профессиональной деятельности возможно будут применять математику, расширяется.

Наша система образования устроена так, что для многих школа дает единственную в жизни возможность приобщиться к математической культуре, овладеть ценностями, заключенными в математике.

Каково же влияние математики вообще и школьной математики в частности на воспитание творческой личности? Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является на наш взгляд важнейшим элементом общей культуры. Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Помимо всего прочего, она вырабатывает еще и привычку к методичной работе, без которой не мыслим ни один творческий процесс. Максимально раскрывая возможности человеческого мышления, математика является его высшим достижением. Она помогает человеку в осознании самого себя и формировании своего характера.

Это то немногое из большого списка причин, в силу которых математические знания должны стать неотъемлемой частью общей культуры и обязательным элементом в воспитании и обучении ребенка.

Курс математики (без геометрии) в нашей 10-летней школе фактически разбит на три основные части: на арифметику (I - V классы), алгебру (VI - VIII классы) и элементы анализа (IX - Х классы). Что служит основанием для такого подразделения?

Конечно, каждая эта часть имеет свою особую «технологию». Так, в арифметике она связана, например, с вычислениями, производимыми над многозначными числами, в алгебре - с тождественными преобразованиями, логарифмированием, в анализе - с дифференцированием и т.д. Но каковы более глубокие основания, связанные с понятийным содержанием каждой части?

Следующий вопрос касается оснований для различения школьной арифметики и алгебры (т.е. первой и второй части курса). В арифметику включают изучение натуральных чисел (целых положительных) и дробей (простых и десятичных). Однако специальный анализ показывает, что соединение этих видов чисел в одном школьном учебном предмете неправомерно.

Дело в том, что эти числа имеют разные функции: первые связаны со счетом предметов, вторые - с измерением величин . Это обстоятельство весьма важно для понимания того факта, что дробные (рациональные) числа являются лишь частным случаем действительных чисел.

С точки зрения измерения величин, как отмечал А.Н. Колмогоров, «нет столь глубокого различия между рациональными и иррациональными действительными числами. Из педагогических соображений надолго задерживаются на рациональных числах, так как их легко записать в форме дробей; однако то употребление, которое им с самого начала придается, должно было бы сразу привести к действительным числам во всей их общности» (), стр. 9).

А.Н. Колмогоров считал оправданным как с точки зрения истории развития математики, так и по существу предложение А. Лебега переходить в обучении после натуральных чисел сразу к происхождению и логической природе действительных чисел. При этом, как отмечал А.Н. Колмогоров, «подход к построению рациональных и действительных чисел с точки зрения измерения величин нисколько не менее научен, чем, например, введение рациональных чисел в виде „пар“. Для школы же он имеет несомненное преимущество» (, стр. 10).

Таким образом, есть реальная возможность на базе натуральных (целых) чисел сразу формировать «самое общее понятие числа» (по терминологии А. Лебега), понятие действительного числа. Но со стороны построения программы это означает не более не менее, как ликвидацию арифметики дробей в ее школьной интерпретации. Переход от целых чисел к действительным - это переход от арифметики к «алгебре», к созданию фундамента для анализа.

Эти идеи, высказанные более 20 лет назад, актуальны и сегодня. Возможно ли изменение структуры обучения математики в начальной школе в данном направлении? Каковы достоинства и недостатки «алгебраизации» начального обучения математики? Цель данной работы - попытаться дать ответы на поставленные вопросы.

Реализация поставленной цели требует решения следующих задач:

Рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа. Эта задача ставится в первой главе работы;

Изучение конкретной методики обучения этим понятиям в начальной школе. Здесь, в частности, предполагается рассмотреть так называемую теорию укрупнения дидактических единиц (УДЕ), речь о которой пойдет ниже;

Показать практическую применимость рассматриваемых положений на школьных уроках математики в начальной школе (уроки проводились автором в средней школе № 4 г. Рыльска). Этому посвящена третья глава работы.

Применительно к библиографии, посвященной данному вопросу, можно отметить следующее. Несмотря на то, что в последнее время общее количество изданной методической литературы по математике крайне незначительно, дефицит информации при написании работы не наблюдался. Действительно, с 1960 (время постановки проблемы) по 1990 гг. в нашей стране вышло огромное число учебной, научной и методической литературы, в той или иной степени затрагивающий проблему введения алгебраических понятий в курсе математики для начальной школы. Кроме того, эти вопросы регулярно освещаются и в специализированной периодике. Так, при написании работы в значительной мере использовались публикации в журналах «Педагогика», «Преподавание математики в школе» и «Начальная школа».

До сих пор наши рассуждения носили теоретический характер и были направлены на выяснение математических предпосылок построения такого начального раздела курса, который знакомил бы детей с основными алгебраическими понятиями (до специального введения числа).

Выше были описаны основные свойства, характеризующие величины. Естественно, что детям 7 лет бессмысленно читать «лекции» относительно этих свойств. Необходимо было найти такую форму работы детей с дидактическим материалом, посредством которой они смогли бы, с одной стороны, выявить в окружающих их вещах эти свойства, с другой - научились бы фиксировать их определенной символикой и проводить элементарный математический анализ выделяемых отношений.

В этом плане программа должна содержать, во-первых, указание тех свойств предмета, которые подлежат освоению, во-вторых, описание дидактических материалов, в-третьих, - и это с психологической точки зрения главное - характеристики тех действий, посредством которых ребенок выделяет определенные свойства предмета и осваивает их. Эти «составляющие» образуют программу преподавания в собственном смысле этого слова.

Конкретные особенности этой гипотетической программы и ее «составляющих» имеет смысл излагать при описании процесса самого обучения и его результатов. Здесь представляется схема данной программы и ее узловые темы.

Тема I. Уравнивание и комплектование объектов (по длине, объему, весу, составу частей и другим параметрам).

Практические задачи на уравнивание и комплектование. Выделение признаков (критериев), по которым одни и те же объекты могут быть уравнены или укомплектованы. Словесное обозначение этих признаков («по длине», по весу" и т.д.).

Эти задачи решаются в процессе работы с дидактическим материалом (планками, грузами и т.д.) путем:

- выбора «такого же» предмета,

- воспроизведения (построения) «такого же» предмета по выделенному (указанному) параметру.

Тема II. Сравнение объектов и фиксация его результатов формулой равенства-неравенства.

1. Задачи на сравнение объектов и знаковое обозначение результатов этого действия.

2. Словесная фиксация результатов сравнения (термины «больше», «меньше», «равно»). Письменные знаки ">", "<", "=".

3. Обозначение результата сравнения рисунком («копирующим», а затем «отвлеченным» - линиями ).

4. Обозначение сравниваемых объектов буквами . Запись результата сравнения формулами: А=Б; А<Б, А>B.

Буква как знак , фиксирующий непосредственно данное, частное значение объекта по выделенному параметру (по весу, по объему и т.д.).

5. Невозможность фиксации результата сравнения разными формулами. Выбор определенной формулы для данного результата (полная дизъюнкция отношений больше - меньше - равно).

Тема III. Свойства равенства и неравенства.

1. Обратимость и рефлексивность равенства (если А=Б, то Б=А; А=А).

2. Связь отношений «больше» и «меньше» в неравенствах при «перестановках» сравниваемых сторон (если А>Б, то Б<А и т.п.).

3. Транзитивность как свойство равенства и неравенства:

если А=Б, если А>Б, если А<Б,

а Б=В, а Б>В, а Б<В,

то А=В; тo A>B; тo А<В.

4. Переход от работы с предметным дидактическим материалом к оценкам свойств равенства-неравенства при наличии только буквенных формул. Решение разнообразных задач, требующих знания этих свойств (например, решение задач, связанных со связью отношений типа: дано, что А>В, а В=С; узнать отношение между А и С).

Тема IV. Операция сложения (вычитания).

1. Наблюдения за изменениями объектов по тому или иному параметру (по объему, по весу, по длительности и т.д.). Изображение увеличения и уменьшения знаками "+" и "-" (плюс и минус ).

2. Нарушение ранее установленного равенства при соответствующем изменении той или иной его стороны. Переход от равенства к неравенству. Запись формул типа:

если А=Б, если А=Б,

то А+К>Б; то А-К<Б.

3. Способы перехода к новому равенству (его «восстановление» по принципу: прибавление «равного» к «равным» дает «равное»).

Работа с формулами типа:

если А=Б,

то А+К>Б,

но А+К=Б+К.

4. Решение разнообразных задач, требующих применения операции сложения (вычитания) при переходе от равенства к неравенству и обратно.

Тема V. Переход от неравенства типа А<Б к равенству через операцию сложения (вычитания).

1. Задачи, требующие такого перехода. Необходимость определения значения величины, на которую разнятся сравниваемые объекты. Возможность записи равенства при неизвестном конкретном значении этой величины. Способ использования х (икса).

Запись формул типа:

если A<Б, если А>Б,

то A+х=Б; то А-x=B.

2. Определение значения х. Подстановка этого значения в формулу (знакомство со скобками). Формулы типа

3. Решение задач (в том числе и «сюжетно-текстовых»), требующих выполнения указанных операций.

Тема Vl. Сложение-вычитание равенств-неравенств. Подстановка.

1. Сложение-вычитание равенств-неравенств:

если А=Б если А>В если А>В

и М=D, и К>Е, и Б=Г,

тo A+M=Б+D; то А+К>В+E; то А+-Б>В+-Г.

2. Возможность представления значения величины суммой нескольких значений. Подстановка типа:

3. Решение разнообразных задач, требующих учета свойств отношений, с которыми дети познакомились в процессе работы (многие задачи требуют одновременного учета нескольких свойств, сообразительности при оценке смысла формул; описание задач и решения приведены ниже).

Такова программа, рассчитанная на 3,5 - 4 мес. первого полугодия. Как показывает опыт экспериментального обучения, при правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий весь изложенный в программе материал может быть полноценно усвоен детьми за более короткий срок (за 3 месяца).

Как строится наша программа дальше? Прежде всего дети знакомятся со способом получения числа , выражающим отношение какого-либо объекта как целого (той же величины, представленной непрерывным или дискретным объектом) к его части. Само это отношение и его конкретное значение изображается формулой А/К=n, где n - любое целое число, чаще всего выражающее отношение с точностью до «единицы» (лишь при специальном подборе материала или при сосчитывании лишь «качественно» отдельных вещей можно получить абсолютно точное целое число). Дети с самого начала «вынуждены» иметь в виду, что при измерении или сосчитывании может получиться остаток, наличие которого нужно специально оговаривать. Это первая ступенька к последующей работе с дробным числом.

При такой форме получения числа нетрудно подвести детей к описанию объекта формулой типа А=5k (если отношение было равно «5»). Вместе с первой формулой она открывает возможности для специального изучения зависимостей между объектом, основанием (мерой) и результатом счета (измерения), что также служит пропедевтикой для перехода к дробным числам (в частности, для понимания основного свойства дроби).

Другая линия развертывания программы, реализуемая уже в I классе, - это перенесение на числа (целые) основных свойств величины (дизъюнкции равенства-неравенства, транзитивности, обратимости) и операции сложения (коммутативности, ассоциативности, монотонности, возможности вычитания). В частности, работая на числовом луче , дети могут быстро претворить последовательность чисел в величину (например, отчетливо оценивать их транзитивность, выполняя записи типа 3<5<8, одновременно связывая отношения «меньше-больше»: 5<8, но 5<3, и т.д.).

Знакомство с некоторыми так сказать «структурными» особенностями равенства позволяет детям иначе подойти к связи сложения и вычитания. Так, при переходе от неравенства к равенству выполняются следующие преобразования: 7<11; 7+х=11; x=11-7; х=4. В другом случае дети складывают и вычитают элементы равенств и неравенств, выполняя при этом работу, связанную с устными вычислениями. Например, дано 8+1=6+3 и 4>2; найти отношение между левой и правой частями формулы при 8+1-4...6+3-2; в случае неравенства привести это выражение к равенству (вначале нужно поставить знак «меньше», а затем приплюсовать к левой части «двойку»).

Таким образом, обращение с числовым рядом как с величиной позволяет по новому формировать сами навыки сложения-вычитания (а затем умножения-деления).

Глава II. Методические рекомендации к изучению алгебраического материала в начальной школе

2.1 Обучение в начальной школе с точки зрения потребностей средней школы

Как известно, при изучении математики в 5-м классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Это повторение практически во всех существующих учебниках занимает 1,5 учебной четверти. Такая ситуация сложилась неслучайно. Ее причина – недовольство учителей математики средней школы подготовкой выпускников начальной школы. В чем же причина такого положения? Для этого была проанализированы пять наиболее известных сегодня учебников математики начальной школы. Это учебники М.И. Моро, И.И. Аргинской, Н.Б. Истоминой, Л.Г. Петерсон и В.В. Давыдова (, , , , ).

Анализ этих учебников выявил несколько негативных моментов, в большей или меньшей степени присутствующих в каждом из них и отрицательно влияющих на дальнейшее обучение. Прежде всего это то, что усвоение материала в них в большей мере основано на заучивании. Ярким примером этого служит заучивание таблицы умножения. В начальной школе ее запоминанию уделяется много сил и времени. Но за время летних каникул дети ее забывают. Причина такого быстрого забывания в механическом заучивании. Исследования Л.С. Выготского показали, что осмысленное запоминание гораздо более эффективно, чем механическое, а проведенные впоследствии эксперименты убедительно доказывают, что материал попадает в долговременную память, только если он запомнен в результате работы, соответствующей этому материалу.

Способ эффективного усвоения таблицы умножения был найден еще в 50-х годах. Он состоит в организации определенной системы упражнений, выполняя которые, дети сами конструируют таблицу умножения. Однако не в одном из рассмотренных учебников этот способ не реализован.

Другим негативным моментом, влияющим на дальнейшее обучение, является то, что во многих случаях изложение материала в учебниках математики начальной школы построено таким образом, что в дальнейшем детей придется переучивать, а это, как известно, гораздо труднее, чем учить. Применительно к изучению алгебраического материала примером может служить решение уравнений в начальной школе. Во всех учебниках решение уравнений основано на правилах нахождения неизвестных компонентов действий.

Несколько иначе это сделано лишь в учебнике Л.Г. Петерсон, где, например, решение уравнений на умножение и деление строится на соотнесении компонентов уравнения со сторонами и площадью прямоугольника и в итоге также сводится к правилам, но это правила нахождения стороны или площади прямоугольника. Между тем, начиная с 6-го класса детей учат совершенно другому принципу решения уравнений, основанному на применении тождественных преобразований. Такая необходимость переучивания приводит к тому, что решение уравнений является достаточно сложным моментом для большинства детей.

Анализируя учебники, мы столкнулись еще и с тем, что при изложении материала в них зачастую имеет место искажение понятий. Например, формулировка многих определений дается в виде импликаций, тогда как из математической логики известно, что любое определение – это эквиваленция. В качестве иллюстрации можно привести определение умножения из учебника И.И. Аргинской: «Если все слагаемые в сумме равны между собой, то сложение можно заменить другим действием – умножением». (Все слагаемые в сумме равны между собой. Следовательно, сложение можно заменить умножением.) Как видно, это импликация в чистом виде. Такая формулировка не только неграмотна с точки зрения математики, не только неправильно формирует у детей представление о том, что такое определение, но она еще и очень вредна тем, что в дальнейшем, например, при построении таблицы умножения авторы учебников используют замену произведения суммой одинаковых слагаемых, чего представленная формулировка не допускает. Такая неправильная работа с высказываниями, записанными в виде импликации, формирует у детей неверный стереотип, который будет с большим трудом преодолеваться на уроках геометрии, когда дети не будут чувствовать разницы между прямым и обратным утверждением, между признаком фигуры и ее свойством. Ошибка, когда при решении задач используется обратная теорема, в то время как доказана только прямая, является очень распространенной.

Другим примером неправильного формирования понятий является работа с отношением буквенного равенства. Например, правила умножения числа на единицу и числа на нуль во всех учебниках даются в буквенном виде: а х 1 = а , а х 0 = 0. Отношение равенства, как известно, является симметричным, а следовательно, подобная запись предусматривает не только то, что при умножении на 1 получается то же число, но и то, что любое число можно представить как произведение этого числа и единицы. Однако словесная формулировка, предложенная в учебниках после буквенной записи, говорит только о первой возможности. Упражнения по этой теме также направлены только на отработку замены произведения числа и единицы этим числом. Все это приводит не только к тому, что предметом сознания детей не становится очень важный момент: любое число можно записать в виде произведения, – что в алгебре при работе с многочленами вызовет соответствующие трудности, но и к тому, что дети в принципе не умеют правильно работать с отношением равенства. К примеру, при работе с формулой разность квадратов дети, как правило, справляются с заданием разложить разность квадратов на множители. Однако те задания, где требуется обратное действие, во многих случаях вызывают затруднения. Другой яркой иллюстрацией этой мысли служит работа с распределительным законом умножения относительно сложения. Здесь также, несмотря на буквенную запись закона, и его словесная формулировка, и система упражнений отрабатывают только умение открывать скобки. В результате этого вынесение общего множителя за скобки в дальнейшем будет вызывать значительные трудности.

Весьма часто в начальной школе, даже когда определение или правило сформулировано верно, обучение стимулирует опору не на них, а на нечто совершенно другое. Например, при изучении таблицы умножения на 2 во всех рассмотренных учебниках показан способ ее построения. В учебнике М.И. Моро это сделано так:

2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

При таком способе работы дети очень быстро подметят закономерность получающегося числового ряда.

Уже после 3–4 равенств они перестанут складывать двойки и начнут записывать результат, основываясь на подмеченной закономерности. Таким образом, способ конструирования таблицы умножения не станет предметом их сознания, результатом чего будет являться непрочное ее усвоение.

При изучении материала в начальной школе опора делается на предметные действия и иллюстративную наглядность, что ведет к формированию эмпирического мышления. Конечно, без подобной наглядности вряд ли можно совсем обойтись в начальной школе. Но она должна служить лишь иллюстрацией того или иного факта, а не основой для формирования понятия. Применение иллюстративной наглядности и предметных действий в учебниках нередко приводит к тому, что «размывается» само понятие. Например, в методике математики для 1–3-х классов М.И. Моро говорится, что детям приходится выполнять деление, раскладывая предметы на кучки или делая рисунок на протяжении 30 уроков. За подобными действиями теряется сущность операции деления как действия, обратного умножению. В результате деление усваивается с наибольшим трудом и значительно хуже, чем другие арифметические действия.

При обучении математике в начальной школе нигде не идет речь о доказательстве каких-либо утверждений. Между тем, помня о том, какую трудность будет вызывать обучение доказательству в средней школе, начинать готовить к этому нужно уже в начальных классах. Причем сделать это можно на вполне доступном для младших школьников материале. Таким материалом, например, могут служить правила деления числа на 1, нуля на число и числа на само себя. Дети вполне в состоянии доказать их, используя определение деления и соответствующие правила умножения.

Материал начальной школы также допускает и пропедевтику алгебры – работу с буквами и буквенными выражениями. Большинство учебников избегает использование букв. В результате четыре года дети работают практически только с числами, после чего, конечно, очень трудно приучать их к работе с буквами. Однако обеспечить пропедевтику такой работы, научить детей подстановке числа вместо буквы в буквенное выражение можно уже в начальной школе. Это сделано, например, в учебнике Л.Г. Петерсон.

Говоря о недостатках обучения математике в начальной школе, мешающих дальнейшему обучению, необходимо особо подчеркнуть тот факт, что зачастую материал в учебниках изложен без взгляда на то, как он будет работать в дальнейшем. Очень ярким примером этого является организация усвоения умножения на 10, 100, 1000 и т.д. Во всех рассмотренных учебниках изложение этого материала построено так, что оно неизбежно приводит к формированию в сознании детей правила: «Чтобы умножить число на 10, 100, 1000 и т.д., нужно справа к нему приписать столько нулей, сколько их в 10, 100, 1000 и т.д.» Это правило является одним из тех, которые очень хорошо усваиваются в начальной школе. И это приводит к большому числу ошибок при умножении десятичных дробей на целые разрядные единицы. Даже запомнив новое правило, дети часто автоматически при умножении на 10 приписывают к десятичной дроби справа нуль. Кроме того, следует отметить, что и при умножении натурального числа, и при умножении десятичной дроби на целые разрядные единицы, по сути дела, происходит одно и то же: каждая цифра числа сдвигается вправо на соответствующее количество разрядов. Поэтому нет смысла учить детей двум отдельным и совершенно формальным правилам. Гораздо полезнее научить их общему способу действий при решении подобных заданий.

2.1 Сравнение (противопоставление) понятий на уроках математики

Действующая программа предусматривает изучение в I классе лишь двух действии первой ступени - сложения и вычитания. Ограничение первого года обучения лишь двумя действиями есть, по существу, отход от того, что было уже достигнуто в учебниках, предшествовавших ныне действующим: ни один учитель никогда не жаловался тогда на то, что умножение и деление, скажем, в пределах 20 непосильно для первоклассников. Достойно внимания еще и то, что в школах других стран, где обучение начинается с 6 лет, к первому учебному году относят начальное знакомство со всеми четырьмя действиями арифметики. Математика опирается прежде всего на четыре действия, и чем раньше они будут включены в практику мышления школьника, тем устойчивее и надежнее будет последующее развертывание курса математики.

Справедливости ради надо отметить, что в первых вариантах учебников М. И. Моро для I класса предусматривалось умножение и деление. Однако делу помешала случайность: авторы новых программ настойчиво держались за одну «новинку» - охват в I классе всех случаев сложения и вычитания в пределах 100 (37+58 и 95-58 и т. п.). Но, поскольку времени на изучение такого расширенного объема сведений не хватило, было решено сдвинуть умножение и деление полностью на следующий год обучения.

Итак, увлечение линейностью программы, т. е. чисто количественным расширением знаний (те же самые действия, но с большими числами), заняло то время, которое ранее отводилось на качественное углубление знаний (изучение всех четырех действий в пределах двух десятков). Изучение умножения и деления уже в I классе означает качественный скачок мышления, поскольку это позволяет освоить свернутые мыслительные процессы.

По традиции, раньше выделялось в особую тему изучение действий сложения и вычитания в пределах 20. Необходимость этого подхода в систематизации знаний видна даже из логического анализа вопроса: дело в том, что полная таблица сложения однозначных чисел развертывается в пределах двух десятков (0+1=1, ...,9+9=18). Таким образом, числа в пределах 20 образуют в своих внутренних связях завершенную систему отношений; отсюда понятна целесообразность сохранения «Двадцати» в виде второй целостной темы (первая такая тема - действия в пределах первого десятка).

Обсуждаемый случай - именно тот, когда концентричность (сохранение второго десятка в качестве особой темы) оказывается более выгодной, чем линейность («растворение» второго десятка в теме «Сотня»).

В учебнике М. И. Моро изучение первого десятка разделено на два изолированных раздела: сначала изучается состав чисел первого десятка, а в следующей теме рассматриваются действия в пределах 10. В экспериментальном учебникеП.М. Эрдниева в противовес этому осуществлено совместное изучение нумерации, состава чисел и действий (сложение и вычитание) в пределах 10 сразу в одном разделе. При таком подходе применяется монографическое изучение чисел, а именно: в пределах рассматриваемого числа (например, 3) сразу же постигается вся «наличная математика»: 1 + 2 = 3; 2 + 1 = 3; 3 – 1 = 2; 3 – 2 = 1.

Если по действующим программам на изучение первого десятка отводилось 70 ч, то в случае экспериментального обучения весь этот материал был изучен за 50 ч (причем сверх программы были рассмотрены некоторые дополнительнные понятия, отсутствующие в стабильном учебнике, но структурно связанные с основным материалом).

Особого внимания в методике начального обучения требует вопрос о классификации задач, о названиях их типов. Поколения методистов трудились над упорядочением системы школьных задач, над созданием их эффективных типов и разновидностей, вплоть до подбора удачных терминов для названий задач, предусмотренных для изучения в школе. Известно, что не менее половины учебного времени на уроках математики отводится их решению. Школьные задачи, безусловно, нуждаются в систематизации и классификации. Какого вида (типа) задачи изучать, когда изучать, какой их тип изучать в связи с прохождением того или иного раздела - это законный объект исследования методики и центральное содержание программ. Значимость этого обстоятельства видна из истории методики математики.

В экспериментальных учебных пособиях автора уделено специальное внимание классификации задач и распределению необходимых их видов и разновидностей для обучения в том или ином классе. В настоящее время классические названия видов задач (на нахождение суммы, неизвестного слагаемого и т. п.) исчезли даже из оглавления стабильного учебника I класса. В пробном учебнике П.М. Эрдниева эти названия «работают»: они полезны как дидактические вехи не только для школьника, но и для учителя. Приведем содержание первой темы пробного учебника математики, для которой характерна логическая полнота понятий.

Первый десяток

Сравнение понятии выше - ниже, левее - правее, между, короче - длиннее, шире - уже, толще - тоньше, старше - моложе, дальше - ближе, медленнее - быстрее, легче - тяжелее, мало - много.

Монографическое изучение чисел первого десятка: название, обозначение, сравнение, откладывание чисел на счетах и обозначение чисел на числовом луче; знаки: равно (=), не равно (¹), больше (>), меньше (<).

Прямая и кривая линии; окружность и овал.

Точка, прямая, отрезок, обозначение их буквами; измерение длины отрезка и откладывание отрезков заданной длины; обозначение, называние, построение, вырезывание равных треугольников, равных многоугольников. Элементы многоугольника: вершины, стороны, диагонали (обозначение их буквами).

Монографическое изучение чисел в пределах рассматриваемого числа:

состав чисел, сложение и вычитание.

Название компонентов сложения и вычитания.

Четверки примеров на сложение и вычитание:

3 + 2 = 5, 5 - 2 = 3, 2 + 3 = 5, 5 - 3 = 2.

Деформированные примеры (с пропущенными числами и знаками):

Х + 5 = 7; 6 – Х = 4;6 = 3A2.

Решение задач на нахождение суммы и слагаемого, разности, уменьшаемого и вычитаемого. Составление и решение взаимно-обратных задач.

Тройка задач: на увеличение и уменьшение числа на несколько единиц и на разностное сравнение. Сравнение отрезков по длине.

Переместительный закон сложения. Изменение суммы в зависимости от изменения одного слагаемого. Условие, когда сумма не изменяется. Простейшие буквенные выражения: a + b = b + a, a + 0 = a, a –a = 0.

Составление и решение задач по выражению.

В последующем изложении рассмотрим основные вопросы методики изложения этого начального раздела школьной математики, имея в виду, что методика изложения последующих разделов во многом должна быть аналогична процессу освоения материала первой темы.

На первых же занятиях учитель должен поставить перед собой цель научить школьника применять пары понятий, содержание которых раскрывается в процессе составления соответствующих предложений с этими словами. (Вначале осваиваем сравнение на качественном уровне, без употребления чисел.)

Приведем примеры наиболее распространенных пар понятий, которыми надо пользоваться на уроках не только математики, но и развития речи:

Больше - меньше, длиннее - короче, выше - ниже, тяжелее - легче, шире - уже, толще - тоньше, правее - левее, дальше - ближе, старше - моложе, быстрее - медленнее и т. п.

При работе над такими парами понятии важно использовать не только иллюстрации в учебнике, но и наблюдения детей; так, например, из окна класса они видят, что за рекой стоит дом, и составляют фразы: «Река ближе к школе, чем дом, а дом дальше от школы, чем река».

Пусть ученик подержит в руке попеременно книгу и тетрадь. Учитель спрашивает: что тяжелее - книга или тетрадь? Что легче? «Книга тяжелее тетради, а тетрадь легче книги».

Выстроив перед классом рядом самого высокого и самого низкого ученика класса, составляем тут же две фразы: «Миша выше Коли, а Коля ниже Миши».

В этих упражнениях важно добиваться грамматически правильной замены одного суждения ему двойственным: «Каменный дом выше деревянного, значит, деревянный дом ниже каменного».

При ознакомлении с понятием «длиннее - короче» можно показать сравнение предметов по длине наложением одного на другой (что длиннее: ручка или пенал?).

На уроках арифметики и развития речи полезно решать логические задачи, преследующие цель научить пользоваться противоположными понятиями: «Кто старше: отец или сын? Кто моложе: отец или сын? Кто из них родился раньше? Кто позже?»;

«Сравните книгу и портфель по ширине. Что шире: книга или портфель? Что уже - книга или портфель? Что тяжелее: книга или портфель?»

Обучение процессу сравнения можно сделать более интересным, вводя так называемые матричные (табличные) упражнения. На доске строится таблица из четырех клеток и разъясняется смысл понятий «столбец» и «строка». Вводим понятия «левый столбец» и «правый столбец», «верхняя строка» и «нижняя строка».

Вместе с учащимися показываем (имитируем) смысловое толкование этих понятий.

Покажите столбец (дети двигают рукой сверху вниз).

Покажите левый столбец, правый столбец (дети проводят два маха рукой сверху вниз).

Покажите строку (мах рукой слева направо).

Покажите верхнюю строку, нижнюю строку (два маха рукой показывающие верхнюю строку, нижнюю строку).

Надо добиваться того, чтобы учащиеся точно указывали положение клетки: «верхняя левая клетка», «нижняя правая клетка» и т. п. Тут же решается обратная задача, а именно: учитель указывает на какую-нибудь клетку таблицы (матрицы), ученик дает соответствующее название этой клетки. Так, если указано на клетку, лежащую в пересечении верхней строки и левого столбца то ученик должен назвать: «Верхняя левая клетка». Подобные упражнения постепенно приучают детей к пространственной ориентировке и имеют важное значение при изучении впоследствии координатного метода математики.

Большое значение для первых уроков начальной математики имеет работа над числовым рядом.

Рост числового ряда прибавлением по единице удобно иллюстрировать перемещением вправо по числовому лучу.

Если знак (+) связывается с перемещением по числовому ряду вправо на единицу, то знак (-) связывается с обратным перемещением влево на единицу и т. п. (Поэтому оба знака показываем одновременно на одном и том же уроке.)

Работая с числовым рядом, вводим понятия: начало числового ряда (число нуль) представляет левый конец луча; числу 1 соответствует единичный отрезок, который надо изобразить отдельно от числового ряда.

Пусть учащиеся работают с числовым рядом в пределах трех.

Выделяем два каких-либо соседних числа, например 2 и 3. Переходя от числа 2 к числу 3, дети рассуждают так: «За числом 2 следует число З». Переходя от числа 3 к числу 2, они говорят:

«Перед числом 3 идет число 2» или: «Число 2 предшествует числу З».

Такой метод позволяет определить место данного числа по отношению как к предыдущему, так и к последующему числу; уместно тут же обратить внимание на относительность положения числа, например: число 3 одновременно является как последующим (за числом 2), так и предыдущим (перед числом 4).

Указанные переходы по числовому ряду надо связать с соответствующими арифметическими действиями.

Например, фраза «За числом 2 следует число З» изображается символически так: 2 + 1 = 3; однако психологически выгодно создать сразу вслед за ней противоположную связь мыслей, а именно: выражение «Перед числом 3 идет число 2» подкрепляется записью: 3 – 1 = 2.

Чтобы добиться понимания места какого-либо числа в числовом ряду, следует предлагать парные вопросы:

1. За каким числом следует число 3? (Число 3 следует за числом 2.) Перед каким числом расположено число 2? (Число 2 расположено перед числом 3.)

2. Какое число следует за числом 2? (За числом 2 следует число 3.) Какое число идет перед числом 3? (Перед числом 3 идет число 2.)

3. Между какими числами находится число 2? (Число 2 находится между числом 1 и числом 3.) Какое число находится между числами 1 и 3? (Между числами 1 и 3 находится число 2.)

В этих упражнениях математическая информация заключена в служебных словах: перед, за, между.

Работу с числовым рядом удобно сочетать со сравнением чисел по величине, а также со сравнением положения чисел на числовой прямой. Постепенно вырабатываются связи суждений геометрического характера: число 4 находится на числовой прямой правее числа 3; значит, 4 больше 3. И наоборот: число 3 находится на числовой прямой левее числа 4; значит, число 3 меньше числа 4. Так устанавливается связь между парами понятий: правее - больше, левее - меньше.

Из изложенного выше мы видим характерную черту укрупненного усвоения знаний: весь набор понятий, связанных со сложением и вычитанием, предлагается совместно, в своих непрерывных переходах (перекодировках) друг в друга.

Главным средством овладения числовыми соотношениями в нашем учебнике являются цветные бруски; их удобно сравнить по длине, устанавливая, на сколько клеток больше или меньше их в верхнем или в нижнем бруске. Иначе говоря, понятие «разностное сравнение отрезков» мы не вводим как особую тему, но учащиеся знакомятся с ним в самом начале изучения чисел первого десятка. На уроках, посвященных изучению первого десятка, удобно использовать цветные бруски, которые позволяют выполнять пропедевтику основных видов задач на действия первой ступени.

Рассмотрим пример.

Пусть друг на друга наложены два цветных бруска, разделенных на клетки:

в нижнем - 3 клетки, в верхнем - 2 клетки (см. рис.).


Сравнивая количество клеток в верхнем и нижнем брусках, учитель составляет два примера на взаимно-обратные действия (2 + 1 = 3, 3 – 1 = 2), причем решения этих примеров прочитываются попарно всеми возможными способами:

2 + 1 = 3 3 – 1 = 2

а) к 2 прибавить 1 - получится 3; а) из 3 вычесть 1 - получится 2;

б) 2 увеличить на 1 - получится 3; б) 3 уменьшить на 1 - получится 2;

в) 3 больше 2 на 1; в) 2 меньше 3 на 1;

г) 2 да 1 будет 3; г) 3 без 1 будет 2;

д) число 2 сложить с числом 1 - д) из числа 3 вычесть число 1 -

получится 3. получится 2.

Учитель. Если 2 увеличить на 1, то сколько получится?

Ученик. Если 2 увеличить на 1, то получится 3.

Учитель. А теперь скажите, что надо сделать с числом 3, чтобы получить 2?

Ученик. 3 уменьшить на 1, получится 2.

Обратим здесь внимание на необходимость в этом диалоге методически грамотного осуществления операции противопоставления. ,

Уверенное овладение детьми смыслом парных понятий (прибавить - отнять, увеличить - уменьшить, больше - меньше, да - без, сложить - вычесть) достигается благодаря использованию их на одном уроке, на базе одной и той же тройки чисел (например, 2+1==3, 3-1=2), на основе одной демонстрации - сравнения длин двух брусков.

В этом принципиальное отличие методической системы укрупнения единиц усвоения от системы раздельного изучения этих базисных понятий, при которой контрастные понятия математики вводятся, как правило, порознь в речевую практику учащихся.

Опыт обучения показывает преимущества одновременного введения пар взаимно противоположных понятий начиная с самых первых уроков арифметики.

Так, например, одновременное употребление трех глаголов: «прибавить» (к 2 прибавить 1), «сложить» (число 2 сложить с числом 1), «увеличить» (2 увеличить на 1), которые изображаются символически одинаково (2+1=3), помогает детям усвоить сходство, близость этих слов по смыслу (подобные рассуждения можно провести относительно слов «отнять», «вычесть», «уменьшить»).

Точно так же сущность разностного сравнения усваивается в ходе многократного использования сравнения пар чисел с самого начала обучения, причем в каждой части диалога на уроке используются все возможные словесные формы истолкования решенного примера: «Что больше: 2 или 3? На сколько 3 больше 2? Сколько надо прибавить к 2, чтобы получить 3?» и т. п. Большое значение для овладения смыслом этих понятий имеет изменение грамматических форм, частое использование вопросительных форм.

Многолетние испытания показали преимущества монографического изучения чисел первого десятка. Каждое очередное число при этом подвергается многостороннему анализу, с перебором всех возможных вариантов его образования; в пределах этого числа выполняются все возможные действия, повторяется «вся наличная математика», используются все допустимые грамматические формы выражения зависимости между числами. Разумеется, при этой системе изучения в связи с охватом последующих чисел повторяются ранее изученные примеры, т. е, расширение числового ряда осуществляется с постоянным повторением ранее рассмотренных сочетаний чисел и разновидностей простых задач.

2.3 Совместное изучение сложения и вычитания, умножения и деления

В методике начальной математики упражнения на эти две операции обычно рассматриваются раздельно. Между тем представляется, что одновременное изучение двуединой операции «сложение - разложение на слагаемые» является более предпочтительным.

Пусть учащиеся решили задачу на сложение: «К трем палочкам прибавить 1 палочку - получится 4 палочки». Вслед за этой задачей сразу же следует поставить вопрос: «Из каких чисел состоит число 4?» 4 палочки состоят из 3 палочек (ребенок отсчитывает 3 палочки) и 1 палочки (отделяет еще 1 палочку).

Исходным упражнением может быть и разложение числа. Учитель спрашивает: «Из каких чисел состоит число 5?» (Число 5 состоит из 3 и 2.) И тотчас же предлагается вопрос про те же числа: «Сколько получится, если к 3 прибавить 2?» (К 3 прибавить 2 - получится 5.)

Для этой же цели полезно практиковать чтение примеров в двух направлениях: 5+2=7. К 5 прибавить 2, получится 7 (читаем слева направо). 7 состоит из слагаемых 2 и 5 (читаем справа налево).

Словесное противопоставление полезно сопровождать такими упражнениями на классных счетах, которые позволяют видеть конкретное содержание соответствующих операций. Вычисления на счетах незаменимы как средство визуализации действий над числами, причем величина чисел в пределах 10 здесь ассоциируется с длиной совокупности косточек, расположенных на одной проволоке (эта длина воспринимается учеником зрительно). Нельзя согласиться с таким «новаторством», когда в действующих учебниках и программах полностью отказались от использования на уроках русских счетов.

Так, при решении примера на сложение (5+2=7) ученик сначала отсчитывал на счетах 5 косточек, затем к ним присоединял 2 и после этого объявлял сумму: «К 5 прибавить 2 - получится 7» (название полученного числа 7 при этом ученик устанавливает пересчетом новой совокупности: «Один - два - три - четыре - пять - шесть - семь»).

Ученик. К 5 прибавить 2 - получилось 7.

Учитель. А теперь покажи, из каких слагаемых состоит число 7.

Ученик (сначала отделяет две косточки вправо, потом говорит). Число 7 состоит из 2 и 5.

Выполняя данные упражнения, целесообразно употреблять с самого начала понятия «первое слагаемое» (5), «второе слагаемое» (2), «сумма».

Предлагаются задания следующих видов: а) сумма двух слагаемых равна 7; найти слагаемые; б) из каких слагаемых состоит число 7?; в) разложите сумму 7 на 2 слагаемых (на 3 слагаемых). И т.д.

Усвоение такого важного алгебраического понятия, как переместительный закон сложения, требует разнообразных упражнений, основанных вначале на практических манипуляциях с предметами.

Учитель. Возьмите в левую руку 3 палочки, а в правую - 2. сколько всего стало палочек?

Ученик. Всего стало 5 палочек.

Учитель. Как подробнее сказать об этом?

Ученик. К 3 палочкам прибавить 2 палочки - будет 5 палочек.

Учитель. Составьте этот пример из разрезных цифр. (Ученик составляет пример: 3+2=5.)

Учитель. А теперь поменяйте местами палочки: палочки, лежащие в левой руке, переложите в правую, а палочки из правой руки переложите в левую. Сколько теперь палочек в двух руках вместе?

Ученик. Всего в двух руках было 5 палочек, и сейчас получилось снова 5 палочек.

Учитель. Почему так получилось?

Ученик. Потому, что мы никуда не откладывали и не добавляли палочки Сколько было, столько и осталось.

Учитель. Составьте из разрезных цифр решенные примеры.

Ученик (откладывает: 3+2=5, 2+3=5). Здесь было число 3, а теперь число 2. А здесь было число 2, а теперь число 3.

Учитель. Мы поменяли местами числа 2 и 3, а результат остался прежним:

5. (Из разрезных цифр складывается пример: 3+2=2+3.)

Переместительный закон усваивается также в упражнениях по разложению числа на слагаемые.

Когда вводить переместительный закон сложения?

Главная цель обучения сложению - уже в пределах первого десятка - постоянно подчеркивать роль переместительного закона в упражнениях.

Пусть вначале дети отсчитали 6 палочек; затем к ним прибавляем три палочки и пересчетом («семь - восемь - девять») устанавливаем сумму: 6 да 3 - будет 9. Необходимо немедленно тут же предложить новый пример: 3+6; новую сумму вначале можно установить опять же пересчетом (т. е. самым примитивным путем), но постепенно и целенаправленно следует формировать способ решения на высшем коде, т. е. логически, без пересчета.

Если 6 да 3-будет 9 (ответ установлен пересчетом), то 3 да 6 (без пересчета!) -тоже будет 9!

Короче говоря, переместительное свойство сложения надо ввести с самого начала упражнений на сложение разных слагаемых, чтобы стало привычкой составление (проговаривание) решения четверки примеров:

6 + 3 = 9, 9 - 3 = 6, 3 + 6 = 9, 9 – 6 = 3.

Составление четверки примеров - это доступное детям средство укрупнения знаний.

Мы видим, что такая важная характеристика операции сложения, как его переместительность, не должна пройти эпизодически, а должна стать основным логическим средством упрочения верных числовых ассоциаций. Главное свойство сложения - переместительность слагаемых - должно рассматриваться постоянно в связи с накоплением в памяти все новых табличных результатов.

Мы видим: взаимосвязь более сложных вычислительных или логических операций основана на аналогичном попарном родстве (близости) элементарных операций, посредством которых выполняется пара «сложных» операций. Иными словами, явное противопоставление сложных понятий основано на неявном (подсознательном) противопоставлении более простых понятий.

Первоначальное изучение умножения и деления целесообразно осуществлять в следующей последовательности трех циклов задач (по три задачи в каждом цикле):

I цикл: а, б) умножение при постоянном множимом и деление по содержанию (совместно); в) деление на равные части.

II цикл: а, б) уменьшение и увеличение числа в несколько раз (совместно); в) кратное сравнение.

III цикл: а, б) нахождение одной части числа и числа по величине одной его части (совместно); в) решение задачи: «Какую часть составляет одно число от другого?»

Методическая система изучения этих задач аналогична той, которая описана выше для простых задач первой ступени (на сложение и вычитание).

Одновременное изучение умножения и деления по содержанию. На двух-трех уроках (не больше!), посвященных умножению, выясняется смысл понятия умножения как свернутого сложения равных слагаемых (о действии деления на этих уроках пока не говорится). Этого времени достаточно для изучения таблицы умножения числа 2 на однозначные числа.

Обычно учащимся показывается запись по замене сложения умножением: 2+2+2+2=8; 2*4=8. Здесь связь между сложением и умножением идет в направлении «сложение-умножение». Уместно тут же предложить учащимся упражнение, рассчитанное на появление обратной связи вида «умножение-сложение» (равных слагаемых): рассматривая эту запись, учащийся должен понять, что требуется число 2 повторять слагаемым столько раз, сколько показывает множитель в примере (2*4=8).

Сочетание обоих видов упражнении есть одно из важных условий, обеспечивающих сознательное усвоение понятия «умножение», означающего свернутое сложение.

На третьем уроке (или четвертом, а зависимости от класса) к каждому из известных случаев умножения приводится соответствующий случай деления. В дальнейшем умножение и деление по содержанию выгодно рассматривать только совместно на одних и тех же уроках.

При введении понятия деления необходимо вспомнить соответствующие случаи умножения, чтобы, оттолкнувшись от них, создать понятие о новом действии, обратном умножению.

Стало быть, понятие «умножение» приобретает богатое содержание: оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое, в свою очередь, представляет «свернутое вычитание», заменяющее последовательное «вычитание по 2»:

Смысл умножения постигается не столько при самом умножении, сколько при постоянных переходах между умножением и делением, так как деление есть завуалированное, «измененное» умножение. Это и объясняет, почему выгодно впоследствии изучать всегда одновременно умножение и деление (как табличное, так и внетабличное; как устное, так и письменное).

Первые уроки по одновременному изучению умножения и деления должны быть посвящены педантичной обработке самих логических операций, всячески подкрепляемых развернутой практической деятельностью по собиранию и раздаче различных предметов (кубиков, грибов, палочек и т. п.), но последовательность развернутых действий должна оставаться одной и той же.

Результатом такой работы и будут таблицы умножения и деления, записываемые рядом:

по 2*2=4, 4: по 2=2,

по 2*3=6, 6: по 2=3,

по 2*4=8, 8: по 2=4,

по 2*5= 10, 10: по 2=5 и т. д.

Таким образом, таблица умножения строится по постоянному множимому, а таблица деления - по постоянному делителю.

Полезно также предложить учащимся в паре с данной задачей структурно противоположное упражнение по переходу от деления к вычитанию равных вычитаемых.

В повторительных упражнениях полезно предлагать задания такого вида: 14:2==.

Изучение деления на равные части. После того как изучены или повторены совместно умножение числа 2 и деление по 2, на одном из уроков вводится понятие «деление на равные части» (третий вид задачи первого цикла).

Рассмотрим задачу: «Четыре ученика принесли по 2 тетради. Сколько всего тетрадей принесли?»

Учитель объясняет: по 2 взять 4 раза - получится 8. (Появляется запись: по 2*4=8.) Кто составит обратную задачу?

Выполняя умножение, мы собирали тетради. Что будем делать при делении по два?

8 тетрадей раздали по 2 тетради каждому ученику - получится 4 (тетрадей хватило 4 ученикам).

Появляется запись:

по 2т. *4 = 8 т.; 8т.: по 2 т. = 4 (ученика).

На первых порах надо пользоваться подробной записью чисел с наименованиями (в делимом, делителе и частном).

Теперь составим третью задачу: «8 тетрадей надо раздать поровну четырем ученикам. По сколько тетрадей достанется каждому?»

Вначале деление на равные части также следует демонстрировать на основе реальных манипуляций с предметами.

Стало быть, понятие «умножение» приобретает богатое содержание: оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое, в свою очередь, представляет свернутое вычитание, заменяющее последовательное «вычитание по 2».

В настоящее время возникли достаточно благоприятные условия для коренного улучшения постановки математического образования в начальной школе:

1) начальная школа из трехлетней преобразована в четырехлетнюю;

2) на изучение математики в первые четыре года выделяется 700 ч., т. е. почти 40 % всего времени, отводимого этому предмету за всю среднюю школу;

3) учителями начальной школы работает с каждым годом все большее число лиц, имеющих высшее образование;

4) возросли возможности лучшего обеспечения учителей и школьников учебно-наглядными пособиями, причем многие из них выпускаются в цветном исполнении.

Нет необходимости доказывать решающую роль начального обучения математике для развития интеллекта ученика вообще. Богатство базисных ассоциаций, обретаемых школьником за первые четыре года обучения, при правильной постановке дела становится главным условием самонаращивания знаний в последующие годы. Если этот запас исходных представлений и понятий, ходов мыслей, основных логических приемов будет неполон, негибок, обеднен, то при переходе в старшие классы школьники будут постоянно испытывать трудности, независимо от того, кто их будет учить дальше или по каким учебникам они будут учиться.

Как известно, начальная школа функционирует в нашей и других странах много веков, в то время как всеобщее среднее образование осуществляется лишь несколько десятилетий. Понятно отсюда, что теория и практика начального обучения гораздо богаче своими добротными традициями, чем обучение в старших классах.

Драгоценные методические находки и обобщения по начальному обучению математике были сделаны еще Л. Н. Толстым, К. Д. Ушинским, С. И. Шохор-Троцким, В. Латышевым и другими методистами уже в прошлом веке. Значительные результаты были получены в последние десятилетия по методике начальной математики в лабораториях Л. В. Занкова, А. С. Пчелко, а также в исследованиях по укрупнению дидактических единиц.

Между тем современное состояние дела обучения в начальной школе таково, что эффективные пути его совершенствования, освоенные учителями в недавние годы, оказались неожиданно обойденными последними редакциями программ и учебников. Серьезный недостаток действующих сейчас программ - это нарушение преемственности с программами для средних классов.

Так, например, в программах начальных классов не решена проблема пропедевтики ряда важных понятий, которая успешно достигалась ранее в начальной школе. Такой пропедевтики не получилось из-за вымученного растягивания программами традиционного материала, который раньше осваивали гораздо быстрее и продуктивнее. Программа нынешней четырехлетней школы стала менее информативной, чем предшествовавшая ей программа для трехлетней школы.

При разумном учете наличных научных результатов, полученных в последние 20 лет по методике начального обучения различными творческими коллективами, сейчас имеется полная возможность добиться в начальной школе «учения с увлечением».

В частности, знакомство учащихся с базовыми алгебраическими понятиями, несомненно, положительно скажется на освоении учащимися соответствующих знаний в старших классах.

Представляется, что лишение младшего школьника доступного и необходимого знания обернется для него уроном, невосполнимым никогда позже.

Для практики начального обучения математике имеет важнейшее значение прием совмещения на одном уроке (в пространстве одной страницы учебника) взаимно-обратных задач. Поэтому представляется совершенно необходимым пользоваться традиционными названиями основных видов сопоставляемых друг другу задач: если повторение равных слагаемых выступает как умножение, то и обратные им задачи (деление на равные части и деление по содержанию) должны использоваться в учебниках, при планировании и проведении уроков. В действующих программах мы не находим привычных понятий: задач на нахождение суммы, нахождение чисел по двум суммам, на приведение к единице, на пропорциональное деление и т.д. Такое положение отнюдь не является достоинством программ.

Психологом Ж. Пиаже была установлена фундаментальная закономерность обратимости операций, с которой связано методическое понятие «обратная задача». В частности, всякая информация, воспринятая человеком, продолжает циркулировать в подсознании (в неосознаваемой форме) в течение 20-30 мин. И вот, если при умножении 172 на 43 нами получено промежуточное произведение 688, то это же число легче всего проявляется (актуализируется) при решении обратной задачи на деление «уголком» (7396:172). Связь мыслей «умножение – деление» как бы прокручивается здесь дважды.

Таково психофизиологическое объяснение полученных на практике преимуществ более раннего введения алгебраических элементов в начальной школе. Этот вывод подтверждается такжеличным педагогическим опытом работы автора на уроках математики в начальных классах Рыльской средней школы № 4.

1. Актуальные проблемы методики обучения математике в начальных классах. / Под ред. М.И. Моро, А.М. Пышкало. – М.: Педагогика, 1977. – 262 с.

2. Аргинская И.И., Ивановская Е.А. Математика: Учебник для 3 класса четырехлетней начальной школы. – Самара: изд. дом «Федоров», 2000. – 192 с.

3. Бантова М.А., Бельтюкова Г.В. Методика преподавания математики в начальных классах. – М.: Педагогика, 1984. – 301 с.

4. ГонинЕ.Г. Теоретическая арифметика. – М.: Учпедгиз, 1961. – 171 с.

5. Давыдов В.В. Математика, 3 класс: Учебник для 4-летней начальной школы. – М.: Издательский центр «Академия», 1998. – 212 с.

6. Давыдов В.В. Психическое развитие в младшем школьном возрасте. / Под ред. А.В. Петровского. – М.: Педагогика, 1973. – 167 с.

7. Зак А.З. Развитие умственных способностей младших школьников. – М.: Вагриус, 1994.

8. Истомина Н.Б. Методика обучения математике в начальных классах. – М.: Издательский центр «Академия», 1998. – 288 с.

9. Истомина Н.Б., Нефедова И.Б. Математика, 3 класс: Учебник для 4-летней начальной школы. – Смоленск: изд-во «Ассоциация XXI век», 2001. – 196 с.

10. Каган В.Ф. О свойствах математических понятий. – М.: Наука, 1984. – 144 с.

11. Когаловский С. Р., Шмелева Е. А., Герасимова О. В. Путь к понятию. Иваново, 1998. - 208 с.

12. Колмогоров А.Н. О профессии математика. М.: Изд-во МГУ, 1959. – 134 с.

13. Мойсенко А. В. Концепция школьного математического образования. В кн. Школа самоопределения. Шаг второй. М.: АО «Политекст». 1994. С.392-422.

14. Моро М.И. и др. Математика: Учебник для 3 класса трехлетней начальной школы и 4 класса четырехлетней начальной школы. / Под ред. Калягина Ю.М. – М.: Просвещение, 1997. – 240 с.

15. Моро М.И., Пышкало А.М. Методика обучения математике в 1-3 классах. – М.: Педагогика, 1978. – 312 с.

16. Петерсон Л.Г. Математика, 3 класс. Ч. 1, 2. Учебник для 4-летней начальной школы. – М.: «Баласс», 2001.

17. Пиаже Ж. Избранные психологические труды. – СП-б: Изд-во «Питер», 1999.

18. Пойя Д. Математическое открытие. М.: Наука, 1976. - 448 с.

19. Сергеенко А.В. Преподавание математики за рубежом. – М.: изд. центр «Академия», 1995. – 197 с.

20. Сойер У. У. Прелюдия к математике. М.: Просвещение, 1972. - 192 с.

21. Тестов В. А. Стратегия обучения математике. М.: ГШБ, 1999. - 304 с.

22. Чуприкова Н.И. Умственное развитие и обучение. Психологические основы развивающего обучения. – М.: Альматея, 1995. – 244 с.

23. Эрдниев П.М., Эрдниев Б.П. Математика: Пробный учебник для 3 класса четырехлетней начальной школы. – М.: Педагогика, 1999. – 232 с.

24. Эрдниев П.М., Эрдниев Б.П. Теория и методика обучения математике в начальной школе. – М.: Педагогика, 1988. – 208 с.

25. Эрдниев П.М., Эрдниев Б.П. Укрупнение дидактических единиц в обучении математике.– М.: Педагогика, 1986. – 197 с.

26. Архангельский А. В. О сущности математики и фундаментальных математических структурах // История и методология естественных наук (Москва) – 1986. - №32. - С.14-29.

27. Брейтнгам Э.К. Обучение математике в личностно-ориентированной модели образования. // Педагогика. – 2000. - № 10. – С. 45-48.

28. Волошкина М.И. Активизация познавательной деятельности младших школьников на уроке математики. // Начальная школа. – 1992. - № 9/10. – С. 15-18.

29. Гальперин П.Я., Георгиев Л.С. К вопросу о формировании начальных математических понятий. Сообщения I - V. // Доклады АПН РСФСР, 1960, № 1, 3, 4-6.

30. Доронина И.М. Использование методики УДЕ на уроках математики в III классе. // Начальная школа. – 1999. - № 11. – С. 29-30.

31. Концепция математического образования (в 12-летней школе) // Математика в школе. - 2000- № 2. - С.13-18.

32. Мартынова О.А. Из опыта обучения математике по системе УДЕ. // Начальная школа. – 1993. - ; 4. – С. 29-31.

33. Пентегова Г.А. Развитие логического мышления на уроках математики. // Начальная школа. – 2000. - № 11. – С. 74-77.

34. Укурчиева Т.А. Актуализация резервов мыслительных операций при обучении математике. // Начальная школа. – 1999. – № 11. – С. 17-18.

35. Шатуновский Я. Математика как изящное искусство и ее роль в общем образовании. // Математика в школе. – 2001. - № 3. – С. 6-11.

36. Шикова Р.Н. Решение задач на движение в одном направлении. // Начальная школа. – 2000. - № 12. – С. 48-52.

37. Эльконин Д.Б. Психологические исследования в начальной школе. // Советская педагогика. – 1961. - № 9. – С. 22-31.

38. Эрдниев П.М. Укрупненные знания как условие радостного обучения. // Начальная школа. – 1999. - № 11. – С. 4-11.

Изучение алгебраического материала в начальной школе. Введение элементов алгебры в начальный курс математики позволяет с самого начала обучения вести планомерную работу, направленную на формирование у детей таких важнейших математических понятий, как выражение, равенство, неравенство, уравнение. Включение элементов алгебры имеет своей целью главным образом более полное и более глубокое раскрытие арифметических понятий, доведение обобщений учащихся до более высокого уровня, а также создание предпосылок для успешного усвоения в дальнейшем курса алгебры. Ознакомление с использованием буквы как символа, обозначающего любое число из известной детям области чисел, создает условия для обобщения многих из рассматриваемых в начальном курсе вопросов арифметической теории, является хорошей подготовкой к ознакомлению детей в дальнейшем с понятиями переменной, функции. Более раннее ознакомление с использованием алгебраического способа решения задач позволяет внести серьезные усовершенствования во всю систему обучения детей решению разнообразных текстовых задач. Работа над всеми перечисленными вопросами алгебраического содержания, в соответствии с тем, как это намечено в учебниках, должна вестись планомерно и систематически в течение всех лет начального обучения. Изучение элементов алгебры в начальном обучении математике тесно связывается с изучением арифметики. Это выражается, в частности, и в том, что, например, уравнения и неравенства решаются не на основе применения алгебраического аппарата, а на основе использования свойств арифметических действий, на основе взаимосвязи между компонентами и результатами этих действий. Формирование каждого из рассматриваемых алгебраических понятий не доводится до формально-логического определения. Задачи изучения темы: 1. Сформировать у учащихся умения читать, записывать и сравнивать числовые выражения. 2. Познакомить учащихся с правилами выполнения порядка действий в числовых выражениях и выработать умение вычислять значения выражений в соответствии с этими правилами. 3. Сформировать у учащихся умение читать, записывать буквенные выражения и вычислять их значения при данных значениях букв. 4. Познакомить учащихся с уравнениями первой степени, содержащее действия первой и второй ступени, сформировать умение решать их способом подбора, а также на основе знания взаимосвязи между компонентами и результатом арифметических действий. Математические выражения. При формировании у детей понятия математического выражения необходимо учитывать, что знак действия, поставленный между числами, имеет два смысла: с одной стороны, он обозначает действие, которое надо выполнить над числами (например, 6+4 - к шести прибавить четыре); с другой стороны, знак действия служит для обозначения выражения (6+4 - это сумма чисел 6 и 4). Понятие о выражении формируется у младших школьников в тесной связи с понятиями об арифметических действиях и способствует лучшему их усвоению. Ознакомление с числовыми выражениями: в методике работы над выражениями предусматриваются два этапа. На первом из них формируется понятие о простейших выражениях (сумма, разность, произведение, частное двух чисел), а на втором- о сложных (сумма произведения и числа, разность двух частных и т. п.). Знакомство с первым выражением - суммой двух чисел происходит в I классе при изучении сложения и вычитания в пределах 10. Выполняя операции над множествами, учащиеся, прежде всего, усваивают конкретный смысл сложения и вычитания, поэтому в записях вида 5+1, 6-2 знаки действий осознаются ими как краткое обозначение слов «прибавить», «вычесть». Примерно в таком же плане идет работа над следующими выражениями: разностью (1 класс), произведением и частным двух чисел (2 класс). Вводятся термины «математическое выражение» и «значение математического выражения» (без определений). После записи нескольких примеров в одно действие учитель сообщает, что эти примеры иначе называются математическими выражениями. Правило, используемое при чтении выражений: 1) установить, какое действие выполняется последним; 2) вспомнить, как называются числа в этом действии; 3) прочитать, чем выражены эти числа. Упражнения в чтении и записи сложных выражений, содержащих компоненты действий, заданные простейшими выражениями, помогают детям усвоить правила порядка действий, а также подготавливают к решению уравнений. Предлагая подобные упражнения и проверяя знания и умения учащихся, учитель должен стремиться лишь к тому, чтобы они умели практически выполнять подобные задания: записать выражение, прочитать его, составить выражение по предложенной задаче, составить задачу по данному выражению (или «по-разному» прочитать данное выражение), понимали, что значит записать сумму (разность) с помощью цифр и знаков действий и что значит вычислить сумму (разность), а в дальнейшем, после введения соответствующих терминов, что значит составить выражение и что значит найти его значение. Изучение правил порядка действий. Цель работы на данном этапе - опираясь на практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли действия в каждом примере. Затем формулируют сами или читают по учебнику вывод. Работа ведется в такой последовательности: 1. Рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т. е. слева направо). 2. Аналогично изучают порядок действий в выражениях со скобками вида: 85-(46-14),60: (30-20), 90: (2*5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках. 3. Наиболее трудным является правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Вывод: порядок действий принят по договоренности: сначала выполняется умножение, деление, затем сложение, вычитание слева на право. 4. Упражнения на вычисления значения выражений, когда ученику приходится применять все изученные правила. Ознакомление с тождественными преобразованиями выражений. Тождественное преобразование выражения - это замена данного выражения другим, значение которого равно значению заданного выражения. Учащиеся выполняют такие преобразования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них (как прибавить сумму к числу, как вычесть число из суммы, как умножить число на произведение и др.). При изучении каждого свойства учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется (значение выражения не меняется при изменении порядка действий только, в том случае, если при этом применяются свойства действий) Ознакомление с буквенными выражениями. Уже в I классе возникает необходимость введения символа, обозначающего неизвестное число. В учебной и методической литературе с этой целью для учащихся предлагались самые разнообразные знаки: многоточие, обведенная пустая клетка, звездочки, вопросительный знак и т. п. Но так как все эти знаки полагается использовать в другом назначении, то для записи неизвестного числа следует использовать общепринятый для этих целей знак - букву. В дальнейшем буква как математический символ используется в начальном обучении математике также для записи обобщенных чисел, то есть когда имеются в виду не одно какое-либо целое неотрицательное число, а любое число. Такая необходимость возникает, когда надо выразить свойства арифметических действий. Буквы необходимы для обозначения величин и записи формул, отражающих зависимости между величинами, для обозначения точек, отрезков, вершин геометрических фигур. В I классе учащиеся применяют букву с целью - обозначения неизвестного искомого числа. Учащиеся знакомятся с написанием и чтением некоторых латинских букв, применяя их сразу для записи примеров с неизвестным числом (простейшие уравнения). Учащимся показывается, как перевести на язык математических символов задание, выраженное словесно: «К неизвестному числу прибавили 2 и получили 6. Найти неизвестное число». Учитель объясняет, как записать эту задачу: обозначить неизвестное число буквой х, затем показать при помощи знака +, что к неизвестному числу прибавили 2 и получили число, равное 6, что и записать, используя знак равенства: х + 2 = 6. Теперь надо выполнять действие вычитания, чтобы по сумме двух слагаемых и одному из них найти другое слагаемое. Основная работа с использованием буквы как математического символа выполняется в последующих классах. При введении буквенных выражений важную роль в системе упражнений играет умелое комбинирование индуктивного и дедуктивного методов. В соответствии с этим упражнения предусматривают переходы от числовых выражений к буквенным и, обратно, от буквенных выражений к числовым. а + b (а плюс b) также математическое выражение, только в нем слагаемые обозначены буквами: каждая из букв обозначает любые числа. Придавая буквам различные числовые значения, можно получить много, сколько угодно числовых выражений. Далее в связи с работой над выражениями раскрывается понятие постоянной. С этой целью рассматриваются выражения, в которых постоянная величина фиксируется с помощью цифр, например: a±12, 8±с. Здесь, как и на предыдущем этапе, предусматриваются упражнения на переход от числовых выражений к выражениям, записанным с помощью букв и цифр, и обратно. Аналогично можно получить математические выражения вида: 17±п, к±30, а позднее - выражения вида: 7*b, а: 8, 48:d. Работа по вычислению значений буквенных выражений при различных значениях букв, наблюдению за изменением результатов вычислений в зависимости от изменения компонентов действий закладывает основы для формирования понятия о переменной. Рассматриваются упражнения на нахождение числовых значений выражений при данных значениях буквы. Далее буквы используются для записи в обобщенном виде ранее изученных на конкретных числовых примерах свойств арифметических действий. Учащиеся, выполняя специальные упражнения, овладевают следующими умениями: 1. Записать при помощи букв свойства арифметических действий, связь между компонентами и результатами арифметических действий. 2. Прочитать записанные с помощью букв свойства арифметических действий, зависимости, отношения. 3. Выполнить тождественное преобразование выражения на основе знания свойств арифметических действий. 4. Доказать справедливость заданных равенств или неравенств при помощи числовой подстановки. Использование буквенной символики способствует повышению уровня обобщения знаний, приобретаемых учащимися начальных классов, и готовит их к изучению систематического курса алгебры в следующих классах. Равенства, неравенства. В практике обучения в начальных классах числовые выражения с самого начала рассматриваются в неразрывной связи с числовыми равенствами и неравенствами. В математике числовые равенства и неравенства делятся на истинные и ложные. В начальных классах вместо этих терминов употребляют слова «верные» и «неверные». Задачи изучения равенств и неравенств в начальных классах заключаются в том, чтобы научить учащихся практически оперировать равенствами и неравенствами: сравнивать числа, сравнивать арифметические выражения, решать простейшие неравенства с одним неизвестным, переходить от неравенства к равенству и от равенства к неравенству. Понятия о равенствах, неравенствах раскрываются во взаимосвязи. При изучении, арифметического материала. Числовые равенства и неравенства изучаются в результате сравнения заданных чисел или арифметических выражений. Поэтому знаками «>», «<», « = » соединяются не любые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения. Первоначально у младших школьников формируются понятия только о верных равенствах и неравенствах (не во всех программах). Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется, с помощью установления взаимно однозначного соответствия. Установленные отношения записываются с помощью знаков «>», «<», « = », учащиеся упражняются в чтении и записи равенств и неравенств. Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел. Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых единицах измерения. Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и вычитания в пределах 10 учащиеся упражняются в сравнении выражения и числа (числа и выражения). Выражение и число (число и выражение) учащиеся сравнивают, не прибегая к операциям над множествами (подумай - поставь знак - объясни - проверь вычислением). Сравнить два выражения - значит, сравнить их значения. Сначала выполняются вычисления, затем рассматриваются задания на основе рассуждений с опорой на обобщение. Термины «решить неравенство», «решение неравенства» не вводятся в начальных классах. Уравнения. Подготовкой к ознакомлению учащихся с уравнениями является вся работа с равенствами и неравенствами. Особое значение среди всех этих упражнений имеют задания, при выполнении которых надо от неравенства перейти к равенству и наоборот. Впервые с уравнением учащиеся знакомятся в первом классе после того, как они познакомились с зависимостью между компонентами сложения. Здесь учащийся воспринимает уравнение как равенство, которое справедливо при определенном значении пока неизвестного числа. Выдвигается требование - найти такое значение буквы, обозначающей неизвестное. Чтобы составить уравнение, достаточно задание, выраженное словесно, записать с помощью математических символов. В соответствии с программой в начальных классах рассматриваются уравнения первой степени с одним неизвестным вида: 7+х=10, х-3=10 + 5, х*(17-10)=70, х:2+10 = 30. Неизвестное число сначала находят подбором, а позднее на основе знания связи между результатом и компонентами арифметических действий (т. е. знания способов нахождения неизвестных компонентов). Найти неизвестное число (корень) - значит решить уравнение. С целью формирования умений решать уравнения предлагают разнообразные упражнения: 1) Решите уравнения и выполните проверку. 2) Выполните проверку решенных уравнений, объясните ошибки в неверно решенных уравнениях. 3) Составьте уравнения с числами х, 7, 10, решите и проверьте решение. 3) Из заданных уравнений выберите и решите те, в которых неизвестное число находят вычитанием (делением). 4) Из заданных уравнений выпишите те, в которых неизвестное число равно 8. 5) Рассмотрите решение уравнения, определите, чем является неизвестное в уравнении и вставьте пропущенный знак действия: х...2=12 х…2=12 х=12:2 х=12+2 7) Решите уравнения; сравните уравнения и их решения: х+8=40 х*3 = 24 х-8=40 х: 3 = 24 После того как учащиеся освоят решение простейших уравнений, уравнения усложняются в том отношении, что: 1) в правой части дается выражение: x+10=30-7; 2) один из компонентов задан выражением к + (18 - 15) = 24; 3) один из компонентов задан выражением, причем в него входит неизвестное (73 - b) + 31 = 85 Для решения таких уравнений необходимы знания порядка действий в выражении, а также умения выполнять простейшие преобразования выражений. Далее вводятся уравнения, содержащие действия первой и второй ступени. Для овладения приемом решения этих уравнений в начальных классах учащемуся необходимо в первую очередь научиться левую часть представить в виде двух компонентов, в результате действий с которыми была получена правая часть, и разобрать состав каждого компонента. При обучении решения уравнений важно вырабатывать навык проверки его корня, то есть найденного значения буквы. Здесь учащиеся должны в уравнение вместо буквы подставить ее значение, отдельно вычислить левую и правую части и сравнить полученные результаты. Отношение равенства этих результатов является основанием для заключения, что найденное число удовлетворяет условиям уравнения. Решение задач с помощью уравнений. Чтобы понять роль решения задач с помощью уравнений, рассмотрим сначала, в чем суть этого способа. Пусть надо решить путем составления уравнения задачу: «На экскурсию поехало 28 мальчиков и несколько девочек. Все они разместились в двух автобусах, по 25 человек в каждом. Сколько девочек отправилось на экскурсию?» Обозначим число девочек, которые отправились на экскурсию, какой-либо буквой, например х. Для составления равенства можно выделить различные связи, в соответствии с которыми можно составить выражения и, приравняв их, получить уравнение: а) В условии задачи сказано, что все мальчики и девочки поехали в автобусах, значит, можно выразить, сколько мальчиков и девочек поехало на экскурсию (28+x) и сколько мальчиков и девочек разместилось в автобусах (25*2), а затем приравнять эти выражения; тогда получится уравнение 28+x=25*2; решив это уравнение, получим ответ на вопрос задачи. б) В условии задачи сказано, что в каждом автобусе разместилось по 25 человек, значит, можно выразить число экскурсантов в каждом автобусе через другие числа и приравнять полученное выражение к числу 25, тогда получится уравнение (28+х): 2 = 25. Можно, рассуждая аналогичным образом, составить и другие уравнения. Для решения задачи с помощью составления уравнений обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное (уравнение), записывают соответствующие выражения и составляют равенство. Полученное уравнение решают. При этом решение полученного уравнения не связывается с содержанием задачи. Решение любой задачи можно выполнить путем составления уравнения, руководствуясь указанным планом. В этом заключается универсальность способа решения задач с помощью составления уравнений, что определяет его преимущества. Кроме того, как видно, решение задач способом составления уравнений способствует овладению понятием уравнения. Поэтому уже в начальных классах в определенной системе ведется обучение решению задач путем составления уравнений. В методике обучения решению задач с помощью составления уравнений предусматриваются следующие этапы: сначала ведется подготовительная работа к решению задач с помощью уравнений, затем вводится решение простых задач с помощью уравнений и, наконец, рассматриваются приемы составления уравнений при решении составных задач.

Основными целями изучения алгебраического материала в начальных классах является получение младшими школьниками первоначальных сведений о равенствах и неравенствах, о переменной, о равенствах и неравенствах с переменной, о математических выражениях (числовых и буквенных), о вычислении их значений, о несложных уравнениях и неравенствах, обучение школьников способам их решения, а также решению задач алгебраическим способом. Изучение алгебраического материала в начальных классах способствует обобщению понятий о числах, арифметических действиях и их свойствах, является подготовкой к изучению алгебры в старших классах

Первые представления о равенствах и неравенствах дети получают при сравнении множеств и чисел. Их изучение связывается с изучением нумерации, арифметических действий и величин. Далее вводится представление о верных и неверных равенствах и неравенствах, о равенствах и неравенствах с переменной.

Уравнение рассматривается как равенство с переменной. Решить уравнение – значит подобрать такое значение переменной, при подстановке которого в уравнение оно обращается в верное числовое равенство. На этом основан способ решения уравнений подбором. В начальных классах уравнения решают также на основе взаимосвязи между компонентами и результатами арифметических действий, на основе применения основных свойств равенств (система Л.В.Занкова), а также с помощью графов (УМК «Начальная школа 21 века»). Решение неравенств ограничивается способом подбора. Уравнения и неравенства используются при решении задач, однако, алгебраический способ решения задач ограничивается в начальных классах уровнем ознакомления.

Понятия о простейших выражениях формируются в связи с изучением арифметических действий, затем вводятся сложные выражения и выражения с переменной. Младшие школьники учатся вычислять значения сложных числовых выражений, используя правила порядка действий. Они учатся также находить значения выражений с переменной при заданных значениях букв.

Буквенная символика используется при обобщении записи законов и свойств арифметических действий, а также формул для вычисления площадей прямоугольников, треугольников, многоугольников, объёмов, скоростей и др.

В настоящее время наблюдаются две кардинально противоположные тенденции в определении объёма содержания алгебраического материала в курсе математики начальной школы. Одна тенденция связана с ранней алгебраизацией курса математики начальных классов. Представителями этой тенденции являются И.И.Аргинская, Э.И.Александрова, Л.Г.Петерсон, В.Н.Рудницкая и др. Другая тенденция связана с введением алгебраического материала в курс математики начальной школы на его завершающем этапе, в конце 4 класса (Н.Б.Истомина) Учебник традиционной школы (М.И.Моро и др.) является представителем «срединных» взглядов.

Введение.......................................................................................................... 2

Глава I. Общетеоретические аспекты изучения алгебраического материала в начальной школе............................................................................................. 7

1.1 Опыт введения элементов алгебры в начальной школе....................... 7

1.2 Психологические основы введения алгебраических понятий

в начальной школе............................................................................... 12

1.3 Проблема происхождения алгебраических понятий и ее значение

для построения учебного предмета..................................................... 20

2.1 Обучение в начальной школе с точки зрения потребностей

средней школы...................................................................................... 33

2.1 Сравнение (противопоставление) понятий на уроках математики.... 38

2.3 Совместное изучение сложения и вычитания, умножения и деления 48

Глава III. Практика изучения алгебраического материала на уроках математики в начальных классах средней школы № 4 г. Рыльска.................................... 55

3.1 Обоснование использования инновационных технологий (технологии

укрупнения дидактических единиц)..................................................... 55

3.2 Об опыте ознакомления с алгебраическими понятиями в I классе.... 61

3.3 Обучение решению задач, связанных с движением тел..................... 72

Заключение.................................................................................................... 76

Библиографический список.......................................................................... 79

В любой современной системе общего образования математика занимает одно из центральных мест, что несомненно говорит об уникальности этой области знаний.

Что представляет собой современная математика? Зачем она нужна? Эти и подобные им вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребенка и его образовательных потребностей.

Часто говорят, что математика - это язык современной науки. Однако, представляется, что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому что математика к нему не сводится.

Выдающийся отечественный математик А.Н. Колмогоров писал: "Математика не просто один из языков. Математика - это язык плюс рассуждения, это как бы язык и логика вместе. Математика - орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим. … Очевидные сложности природы с ее странными законами и правилами, каждое из которых допускает отдельное очень подробное объяснение, на самом деле тесно связаны. Однако, если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому " (, с. 44).

Таким образом, математика позволяет сформировать определенные формы мышления, необходимые для изучения окружающего нас мира.

В настоящее время все более ощутимой становится диспропорция между степенью наших познаний природы и пониманием человека, его психики, процессов мышления. У. У. Сойер в книге "Прелюдия к математике" (, с. 7) отмечает: "Можно научить учеников решать достаточно много типов задач, но подлинное удовлетворение придет лишь тогда, когда мы сумеем передать нашим воспитанникам не просто знания, а гибкость ума", которая дала бы им возможность в дальнейшем не только самостоятельно решать, но и ставить перед собой новые задачи.

Конечно, здесь существуют определенные границы, о которых нельзя забывать: многое определяется врожденными способностями, талантом. Однако, можно отметить целый набор факторов, зависящих от образования и воспитания. Это делает чрезвычайно важной правильную оценку огромных неиспользованных еще возможностей образования в целом и математического образования в частности.

В последние годы наметилась устойчивая тенденция проникновения математических методов в такие науки как история, филология, не говоря уже о лингвистике и психологии. Поэтому круг лиц, которые в своей последующей профессиональной деятельности возможно будут применять математику, расширяется.

Наша система образования устроена так, что для многих школа дает единственную в жизни возможность приобщиться к математической культуре, овладеть ценностями, заключенными в математике.

Каково же влияние математики вообще и школьной математики в частности на воспитание творческой личности? Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является на наш взгляд важнейшим элементом общей культуры. Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Помимо всего прочего, она вырабатывает еще и привычку к методичной работе, без которой не мыслим ни один творческий процесс. Максимально раскрывая возможности человеческого мышления, математика является его высшим достижением. Она помогает человеку в осознании самого себя и формировании своего характера.

Это то немногое из большого списка причин, в силу которых математические знания должны стать неотъемлемой частью общей культуры и обязательным элементом в воспитании и обучении ребенка.

Курс математики (без геометрии) в нашей 10-летней школе фактически разбит на три основные части: на арифметику (I - V классы), алгебру (VI - VIII классы) и элементы анализа (IX - Х классы). Что служит основанием для такого подразделения?

Конечно, каждая эта часть имеет свою особую "технологию". Так, в арифметике она связана, например, с вычислениями, производимыми над многозначными числами, в алгебре - с тождественными преобразованиями, логарифмированием, в анализе - с дифференцированием и т.д. Но каковы более глубокие основания, связанные с понятийным содержанием каждой части?

Следующий вопрос касается оснований для различения школьной арифметики и алгебры (т.е. первой и второй части курса). В арифметику включают изучение натуральных чисел (целых положительных) и дробей (простых и десятичных). Однако специальный анализ показывает, что соединение этих видов чисел в одном школьном учебном предмете неправомерно.

Дело в том, что эти числа имеют разные функции: первые связаны со счетом предметов, вторые - с измерением величин . Это обстоятельство весьма важно для понимания того факта, что дробные (рациональные) числа являются лишь частным случаем действительных чисел.

С точки зрения измерения величин, как отмечал А.Н. Колмогоров, "нет столь глубокого различия между рациональными и иррациональными действительными числами. Из педагогических соображений надолго задерживаются на рациональных числах, так как их легко записать в форме дробей; однако то употребление, которое им с самого начала придается, должно было бы сразу привести к действительным числам во всей их общности" (), стр. 9).

А.Н. Колмогоров считал оправданным как с точки зрения истории развития математики, так и по существу предложение А. Лебега переходить в обучении после натуральных чисел сразу к происхождению и логической природе действительных чисел. При этом, как отмечал А.Н. Колмогоров, "подход к построению рациональных и действительных чисел с точки зрения измерения величин нисколько не менее научен, чем, например, введение рациональных чисел в виде "пар". Для школы же он имеет несомненное преимущество" (, стр. 10).

Таким образом, есть реальная возможность на базе натуральных (целых) чисел сразу формировать "самое общее понятие числа" (по терминологии А. Лебега), понятие действительного числа. Но со стороны построения программы это означает не более не менее, как ликвидацию арифметики дробей в ее школьной интерпретации. Переход от целых чисел к действительным - это переход от арифметики к "алгебре", к созданию фундамента для анализа.

Эти идеи, высказанные более 20 лет назад, актуальны и сегодня. Возможно ли изменение структуры обучения математики в начальной школе в данном направлении? Каковы достоинства и недостатки «алгебраизации» начального обучения математики? Цель данной работы - попытаться дать ответы на поставленные вопросы.

Реализация поставленной цели требует решения следующих задач:

Рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа. Эта задача ставится в первой главе работы;

Изучение конкретной методики обучения этим понятиям в начальной школе. Здесь, в частности, предполагается рассмотреть так называемую теорию укрупнения дидактических единиц (УДЕ), речь о которой пойдет ниже;

Показать практическую применимость рассматриваемых положений на школьных уроках математики в начальной школе (уроки проводились автором в средней школе № 4 г. Рыльска). Этому посвящена третья глава работы.

Применительно к библиографии, посвященной данному вопросу, можно отметить следующее. Несмотря на то, что в последнее время общее количество изданной методической литературы по математике крайне незначительно, дефицит информации при написании работы не наблюдался. Действительно, с 1960 (время постановки проблемы) по 1990 гг. в нашей стране вышло огромное число учебной, научной и методической литературы, в той или иной степени затрагивающий проблему введения алгебраических понятий в курсе математики для начальной школы. Кроме того, эти вопросы регулярно освещаются и в специализированной периодике. Так, при написании работы в значительной мере использовались публикации в журналах «Педагогика», «Преподавание математики в школе» и «Начальная школа».