Процесс переработки нефти и газа. Перегонка нефти, первичная и вторичная переработка нефти

Нефть представляет собой важнейшее исходное сырье для промышленности России. Вопросы, которые связаны с этим ресурсом, во все времена считались одними из главных для экономики страны. Переработка нефти в России осуществляется специализированными предприятиями. Далее рассмотрим особенности этой отрасли более подробно.

Общие сведения

Отечественные нефтеперерабатывающие заводы стали появляться еще в 1745 году. Первое предприятие было основано братьями Чумеловыми на реке Ухте. Оно выпускало весьма востребованные в то время керосин и смазочные масла. В 1995 году первичная переработка нефти составила уже 180 млн тонн. Среди основных факторов размещения предприятий, занятых в этой отрасли, выступают сырьевой и потребительский.

Развитие отрасли

Основные нефтеперерабатывающие предприятия появились в России в послевоенные годы. До 1965-го в стране было создано порядка 16 мощностей, что составляет больше половины действующих в настоящее время. Во время экономических преобразований 1990-х годов отмечался значительный спад производства. Это было связано с резким снижением внутреннего потребления нефти. Вследствие этого качество выпускаемой продукции было достаточно низким. Упал и коэффициент глубины переработки до 67,4%. Только к 1999 году Омскому НПЗ удалось приблизиться к европейским и американским стандартам.

Современные реалии

В последние несколько лет переработка нефти стала выходить на новый уровень. Это обусловлено инвестициями в эту отрасль. С 2006 года они составили более 40 млрд руб. Кроме того, значительно увеличился и коэффициент глубины переработки. В 2010 году по указу Президента РФ было запрещено подключать к магистралям те предприятия, у которых он не достигал 70%. Глава государства объяснил это тем, что таким комбинатам необходима серьезная модернизация. В целом по стране количество таких мини-предприятий достигает 250. К концу 2012-го было запланировано построить крупный комплекс на конце трубопровода, проходящего к Тихому океану по Восточной Сибири. Его глубина переработки должна была составить порядка 93%. Этот показатель будет соответствовать уровню, который достигнут на аналогичных предприятиях США. Нефтеперерабатывающая промышленность, консолидированная в большей своей части, находится под контролем таких компаний, как "Роснефть", "Лукойл", "Газпром", "Сургутнефтегаз", "Башнефть" и пр.

Значение отрасли

На сегодняшний день добыча и переработка нефти считаются одними из самых перспективных отраслей промышленности. Постоянно увеличивается число крупных и мелких предприятий, занятых в них. Переработка нефти и газа приносит стабильный доход, оказывая положительное влияние на экономическое состояние страны в целом. Наиболее развита данная отрасль в центре государства, Челябинской и Тюменской областях. Продукты переработки нефти востребованы не только внутри страны, но и за ее пределами. Сегодня предприятиями производятся керосин, бензин, авиационное, ракетное, дизельное топливо, битумы, моторные масла, мазут и так далее. Практически все комбинаты созданы рядом с вышками. Благодаря этому переработка и транспортировка нефти осуществляются с минимальными затратами. Наиболее крупные предприятия располагаются в Поволжском, Сибирском, Центральном ФО. На эти нефтеперерабатывающие заводы приходится порядка 70% всех мощностей. Среди субъектов страны лидирующие позиции в отрасли занимает Башкирия. Переработка нефти и газа осуществляется в Ханты-Мансийске, Омской области. Работают предприятия и в Краснодарском крае.

Статистика по регионам

В европейской части страны основные производства располагаются в Ленинградской, Нижегородской, Ярославской и Рязанской областях, Краснодарском крае, на Дальнем Востоке и юге Сибири, в таких городах, как Комсомольск-на-Амуре, Хабаровск, Ачинск, Ангарск, Омск. Современные НПЗ сооружены в Пермском крае, Самарской области и Башкирии. Эти регионы всегда считались крупнейшими центрами по добыче нефти. С перемещением производств в Западную Сибирь промышленные мощности в Поволжье и на Урале стали избыточными. На 2004 год лидером среди субъектов РФ по первичной обработке нефти стала Башкирия. В этом регионе показатели находились на уровне 44 млн тонн. В 2002 году на заводы Башкортостана приходилось порядка 15% общего объема переработки нефти по РФ. Это около 25,2 млн т. На следующем месте оказалась Самарская область. Она давала стране порядка 17,5 млн тонн. Далее по объему были Ленинградская (14,8 млн) и Омская (13,3 млн) области. Общая доля этих четырех субъектов составила 29% от общероссийской нефтепереработки.

Технология переработки нефти

В производственный цикл предприятий входят:

  • Подготовка сырья.
  • Первичная переработка нефти.
  • Вторичный перегон фракций.

В современных условиях переработка нефти осуществляется на предприятиях, оснащенных сложными по своей конструкции машинами и аппаратами. Они функционируют в условиях низкой температуры, высокого давления, глубокого вакуума и зачастую в агрессивной среде. Процесс переработки нефти включает в себя несколько ступеней на комбинированных или отдельных установках. Они предназначены для получения широкого ассортимента продукции.

Очистка

В ходе этого этапа осуществляется обработка сырья. Очистке подвергается нефть, поступающая с промыслов. В составе нее находятся 100-700 мг/л солей и вода (менее 1%). В ходе очистки содержание первого компонента доводится до 3-х и менее мг/л. Доля воды при этом составляет меньше 0,1%. Очистка осуществляется на электрообессоливающих установках.

Классификация

Любой завод по переработке нефти применяет химические и физические методы обработки сырья. Посредством последних достигается разделение на масляные и топливные фракции либо удаление нежелательных комплексных химических элементов. Переработка нефти химическими методами позволяет получить новые компоненты. Эти превращения классифицируются:


Основные этапы

Главным процессом после очистки на ЭЛОУ выступает атмосферная перегонка. В ходе нее осуществляется отбор топливных фракций: бензиновых, дизельного и реактивного топлива, а также осветительного керосина. Также при атмосферной перегонке отделяется мазут. Он используется или в качестве сырья для следующей глубокой переработки, или как элемент котельного топлива. Фракции затем подвергаются облагораживанию. Они проходят гидроочистку от гетероатомных соединений. Бензины подвергаются каталитическому риформингу. Этот процесс используется для повышения качества сырья либо для получения индивидуальных ароматических углеводородов - материала для нефтехимии. К последним, в частности, относят бензол, толуол, ксилолы и так далее. Мазут проходит вакуумную перегонку. Этот процесс позволяет получить широкую фракцию газойля. Это сырье проходит последующую переработку на установках гидро- или каталитического крекинга. В результате получают компоненты моторных топлив, масляные узкие дистиллятные фракции. Они далее направляются на следующие этапы очистки: селективную обработку, депарафинизацию и прочие. После вакуумной перегонки остается гудрон. Он может использоваться как сырье, применяемое при глубокой переработке для получения дополнительного объема моторных топлив, нефтяного кокса, строительного и дорожного битума, или как компонент котельного топлива.

Способы переработки нефти: гидроочистка

Этот метод считается наиболее распространенным. С помощью гидроочистки осуществляется переработка нефти сернистого и высокосернистого типа. Этот метод позволяет повысить качество моторных топлив. В ходе процесса удаляют сернистые, кислородные и азотистые соединения, выполняют гидрирование олефинов сырья в водородной среде на алюмокобальтмолибденовых либо никельмолибденовых катализаторах при давлении в 2-4 Мпа и температуре 300-400 градусов. Другими словами, при гидроочистке органические вещества, содержащие азот и серу, разлагаются. Они вступают в реакцию с водородом, который циркулирует в системе. В результате образуются сероводород и аммиак. Полученные соединения удаляются из системы. В ходе всего процесса 95-99% от исходного сырья превращаются в очищенный продукт. Вместе с этим образуется небольшой объем бензина. Активный катализатор подвергается периодической регенерации.

Каталитический крекинг

Он протекает без давления при температуре 500-550 градусов на цеолитсодержащих катализаторах. Данный процесс считается наиболее эффективным и углубляющим переработку нефти. Это обусловлено тем, что в ходе него из высококипящих мазутных фракций (вакуумного газойля) можно получать до 40-60% высокооктанового автобензинового компонента. Кроме того, из них выделяют жирный газ (порядка 10-25%). Он, в свою очередь, используется на установках алкилирования или эфирных производствах для получения высокооктановых компонентов авто- или авиабензинов. В ходе крекинга на катализаторе формируются углистые отложения. Они резко снижают его активность - крекирующую способность в данном случае. Для восстановления компонент подвергается регенерации. Наиболее распространены установки, в которых циркуляция катализатора осуществляется в псевдоожиженном или кипящем слое и в движущемся потоке.

Каталитический риформинг

Это современный и достаточно широко используемый процесс для получения низко- и высокооктановых бензинов. Он проводится при температуре 500 градусов и давлении в 1-4 Мпа в водородной среде на алюмоплатиновом катализаторе. При помощи каталитического риформинга выполняются преимущественно химические превращения парафиновых и нафтеновых углеводородов в ароматические. Вследствие этого значительно увеличивается октановое число (до 100 пунктов). К продуктам, которые получают при каталитическом риформинге, относят ксилолы, толуол, бензол, применяемые затем в нефтехимической промышленности. Выходы риформата, как правило, составляют 73-90%. Для сохранения активности катализатор периодически подвергается регенерации. Чем ниже будет давление в системе, тем чаще выполняется восстановление. Исключение при этом составляет процесс платформинга. В ходе него катализатор не подвергают регенерации. В качестве главной особенности всего процесса выступает то, что он проходит в среде водорода, излишек которого удаляется из системы. Он намного дешевле, чем получаемый специально. Избыточный водород затем применяется в гидрогенизационных процессах переработки нефти.

Алкилирование

Этот процесс позволяет получать высококачественные компоненты автомобильных и авиационных бензинов. В его основе лежит взаимодействие олефиновых и парафиновых углеводородов с получением более высококипящего парафинового углеводорода. Еще недавно промышленное изменение данного процесса было ограничено каталитическим алкилированием бутилена изобутанами в присутствии фтористоводородной или серной кислот. В течение последних лет, кроме указанных соединений, используют пропилен, этилен и даже амилены, а в некоторых случаях смеси этих олефинов.

Изомеризация

Она представляет собой процесс, в ходе которого осуществляется превращение парафиновых низкооктановых углеводородов в соответствующие изопарафиновые фракции, имеющие более высокое октановое число. Используются при этом преимущественно фракции С5 и С6 либо их смеси. На промышленных установках при соответствующих условиях можно получить до 97-99,7% продуктов. Изомеризация проходит в водородной среде. Катализатор периодически подвергается регенерации.

Полимеризация

Этот процесс представляет собой превращение бутиленов и пропилена в олигомерные жидкие соединения. Они применяются в качестве компонентов автомобильных бензинов. Эти соединения также являются сырьем для нефтехимических процессов. В зависимости от исходного материала, производственного режима и катализатора объем на выходе может меняться в достаточно широких пределах.

Перспективные направления

В течение последних десятилетий особое внимание уделяется комбинированию и укреплению мощностей, занятых в первичной нефтепереработке. Еще одним актуальным направлением является внедрение установок крупнотоннажных комплексов по планируемому углублению обработки сырья. За счет этого будет сокращен производственный объем мазута и увеличен выпуск светлого двигательного топлива, нефтехимических продуктов для полимерной химии и органического синтеза.

Конкурентоспособность

Нефтеперерабатывающая промышленность сегодня - это весьма перспективная отрасль. Она отличается высокой конкурентоспособностью как на внутреннем, так и на международном рынке. Собственные производственные мощности позволяют полностью покрыть потребности в пределах государства. Что касается импорта, то он осуществляется в сравнительно небольших объемах, локально и эпизодически. Россия сегодня считается крупнейшим среди прочих стран экспортером нефтепродуктов. Высокая конкурентоспособность обусловлена абсолютной обеспеченностью сырьем и относительно невысоким уровнем расходов на дополнительные материальные ресурсы, электроэнергию, защиту окружающей среды. В качестве одного из негативных факторов в этом промышленном секторе выступает технологическая зависимость отечественной нефтепереработки от зарубежных государств. Несомненно, это не единственная проблема, которая существует в отрасли. На правительственном уровне постоянно ведется работа по улучшению ситуации в этом промышленном секторе. В частности, разрабатываются программы по модернизации предприятий. Особое значение имеет в данной области деятельность крупных нефтяных компаний, производителей современного производственного оборудования.

Сырая нефть является термином, который употребляют для обозначения необработанной нефти - сырья, которое выходит из-под земли как есть. Таким образом, сырая нефть является ископаемым топливом, а это означает, что она произведена естественным природным путём из разлагающихся растений и животных, обитающих в древних морях миллионы лет назад - большинство мест, где чаще всего находят нефть, когда-то были дном морей. Сырая нефть в зависимости от месторождения бывает разной и изменяется в цвете и консистенции: от ярко-чёрной (мокрый асфальт) и очень вязкой, до немного прозрачной и почти твёрдой.


Главная ценность и польза нефти заключается в том, что она является отправной точкой для очень многих различных веществ, так как она содержит углеводороды. Углеводороды - это молекулы, которые, очевидно, содержат водород и углерод, и отличаются друг от друга лишь тем, что могут быть различной длины и структуры - от прямых цепочек до разветвлённых цепей с кольцами.

Существуют две вещи, которые делают углеводороды интересными для химиков:

  1. Углеводороды содержат много потенциальной энергии. Многое из того, что получено из сырой нефти, как то: бензин, дизельное топливо , парафин и т.д. - ценно именно этой потенциальной энергией.
  2. Углеводороды могут принимать множество различных форм. Наименьшим углеводородом (по чилу атомов) является метан (СН 4), который представляет собой газ, который легче воздуха. Более длинные цепочки с 5 или более атомами углерода являются в подавляющем большинстве случаев жидкостями. А уж очень длинные цепочки - твердые, например, воск или смола. По химической структуре "сшивания" углеводородных цепей Вы сможете получить все: от синтетического каучука до нейлона и пластика. Углеводородные цепочки на самом деле очень универсальны!

Основные классы углеводородов в сырой нефти включают в себя:

  • Парафины с общей формулой C n H 2n+2 (n представляет собой целое число, обычно от 1 до 20) с прямой структурой или разветвленной цепью могут представлять газы или жидкости, которые кипят уже при комнатной температуре в зависимости от примеров молекул: метан, этан, пропан, бутан, изобутан, пентан, гексан.
  • Ароматики с общей формулой: C 6 H 5 -Y (Y представляет собой большую прямую молекулу, которая соединяется с бензольным кольцом) - это кольчатые структуры с одним или более кольцами, которые содержат шесть атомов углерода, с чередованием двойных простых связей между атомами углерода. Яркие примеры ароматиков: бензол и нафталин.
  • Нафтены или циклоалканы с общей формулой C n H 2n (n является целым числом, как правило, от 1 до 20) - это кольчатые структуры с одним или несколькими кольцами, которые содержат только простые связи между атомами углерода. Это, как правило, жидкости: циклогексан, метилциклопентан и другие.
  • Алкены с общей формулой C n H 2n (n представляет собой целое число, обычно от 1 до 20) - это линейные или разветвлённые цепные молекулы, содержащие одну углерод-углеродную двойную связь, которые могут быть жидкостью или газом, например: этилен, бутен, изобутен.
  • Алкины с общей формулой: C n H 2n-2 (n представляет собой целое число, обычно от 1 до 20) - это линейные или разветвлённые цепные молекулы, содержащие две углерод-углеродные двойные связи, которые могут быть жидкостью или газом, например: ацетилен, бутадиены.

Теперь, зная структуру нефти, давайте посмотрим, что мы можем с ней сделать.

Как работает нефтепереработка?

Процесс переработки нефти начинается с дробной ректификационной колонны.


Типичный нефтеперерабатывающий завод

Главная проблема с сырой нефтью заключается в том, что она содержит сотни различных типов углеводородов, смешанные все вместе. И наша задача заключается в том, чтобы отделить различные виды углеводородов, чтобы получить что-нибудь полезное. К счастью, есть простой способ отделить эти вещи, и это то, что нефтепереработка и делает.

Различные длины углеводородной цепи имеют прогрессивно более высокие точки кипения, так что они могут быть разделены простой перегонкой с различными температурами. Проще говоря, нагревая нефть до какой-либо температуры, начинают закипать определённые цепочки углеводородов, и, таким образом, мы можем отделять "зёрна от плевел". Это то, что происходит на нефтеперерабатывающем заводе - в одной части процесса нефть нагревают, и различные цепи выкипают при соответствующих температурах кипения. Каждая отличающаяся длина цепи имеет своё уникальное свойство, что делает её полезной по-своему.

Чтобы понять разнообразие, содержащееся в сырой нефти, и понять, почему переработка сырой нефти настолько важна в нашей цивилизации, посмотрите на следующий список продуктов, которые получаются из сырой нефти:

Нефтяные газы - используются для отопления, приготовления пищи, изготовления пластмасс:

  • это небольшие алканы (от 1 до 4 атомов углерода)
  • широко известны по таким названиям как метан, этан, пропан, бутан
  • диапазон кипения - менее 40 градусов по Цельсию
  • часто сжижаемые под давлением газы

Нафта или лигроин - промежуточный продукт, который будет дополнительно обработан, чтобы впоследствии стать бензином:

  • содержит от 5 до 9 атомов алканов углерода
  • диапазон кипения - от 60 до 100 градусов по Цельсию

Бензин - моторное топливо:

  • всегда жидкий продукт
  • представляет собой смесь алканов и циклоалканов (от 5 до 12 атомов углерода)
  • диапазон кипения - от 40 до 205 градусов по Цельсию

Керосин - топливо для реактивных двигателей и тракторов; исходный материал для изготовления других продуктов:

  • жидкость
  • смесь алканов (от 10 до 18 атомов углерода) и ароматических углеводородов
  • диапазон кипения - от 175 до 325 градусов по Цельсию

Дизельный дистиллят - используется для дизельного топлива и мазута; исходный материал для изготовления других продуктов:

  • жидкость
  • алканы, содержащие 12 или более атомов углерода
  • диапазон кипения - от 250 до 350 градусов по Цельсию

Смазочные масла - используются для изготовления моторного масла, жира, других смазочных материалов:

  • жидкость
  • длинноцепочечные структуры (от 20 до 50 углеродных атомов) алканы, циклоалканы, ароматики
  • диапазон кипения - от 300 до 370 градусов по Цельсию

Мазут - используется для промышленного топлива; исходный материал для изготовления других продуктов:

  • жидкость
  • длинноцепочечные структуры (от 20 до 70 углеродных атомов) алканы, циклоалканы, ароматики
  • диапазон кипения - 370 до 600 градусов по Цельсию

Остатки продуктов переработки - кокс, асфальт, гудрон, парафины; исходный материал для изготовления других продуктов:

  • твердые частицы
  • множественные кольцевые соединения с 70 или более атомами углерода
  • диапазон кипения не менее 600 градусов по Цельсию.

Вы, возможно, заметили, что все эти продукты имеют различные размеры и диапазоны кипения. Химики воспользовались этими свойствами для нефтепереработки. Давайте теперь далее узнаем детали этого увлекательного процесса!

Подробный процесс переработки нефти

Как упоминалось ранее, баррель сырой нефти имеет смесь всевозможных углеводородов в себе. Нефтепереработка отделяет от всей этой "компании разнорасовых представителей" полезные вещества. При этом, происходят следующие группы производственные химические процессы, которые, в принципе, есть на каждой нефтеперерабатывающей фабрике:

  • Самый старый и самый распространённый способ отделить от нефти различные компоненты (их называют фракции) - это сделать это, используя различия в температуре кипения. Этот процесс называется фракционной перегонкой .
  • Новые методы использования химической обработки в некоторых из фракций используют метод преобразования. Химическая обработка, например, может нарушить длинные цепочки на более короткие. Это позволяет нефтеперерабатывающему заводу превратить дизельное топливо в бензин в зависимости, например, от спроса.
  • Нефтеперерабатывающие заводы, кроме того, после процесса фракционной перегонки должны очищать фракции в целях удаления из них примесей.
  • Нефтеперерабатывающие заводы объединяют различные фракции (обработанные и необработанные) в смеси, чтобы сделать нужные продукты. Например, различные смеси из различных цепочек могут создать бензины с различным октановым числом.

Продукты переработки нефти отправляются на недолгое хранение в специальные резервуары, пока они не будут доставлены на различные рынки: АЗС, аэропорты и ​​на химические предприятия. В дополнение к созданию продуктов на масляной основе, заводы должны также позаботиться об отходах, появление которых неизбежно, чтобы минимизировать загрязнение воздуха и воды.

Фракционная перегонка

Различные компоненты нефти имеют различные размеры, вес и температуры кипения; так, первый шаг заключается в разделении этих компонентов. Поскольку они имеют различные температуры кипения, они могут быть разделены легко с помощью процесса, называемого фракционной перегонкой.

Этапы фракционной перегонки следующие:

  • Вы нагреваете смесь двух или более веществ (жидкостей) с различными температурами кипения до высокой температуры. Нагревание обычно делается с помощью пара под высоким давлением до температуры около 600 градусов по Цельсию.
  • Смесь кипит, образуя пар (газы); большинство веществ проходят в паровой фазе.
  • Пар поступает в нижнюю часть длинной колонны, которая заполнена лотками или тарелками. Лотки имеют много отверстий или пузырчатые колпачки (аналогично продырявленной крышке на пластиковой бутылке) в них, чтобы позволить пару пройти сквозь них. Они увеличивают время контакта между паром и жидкостью в колонне и помогают сбору жидкостей, которые образуются на различных высотах в колонке. Существует разница температур в этой колонне (очень горячая внизу и холоднее к верхней части).
  • Таким образом, пар поднимается в колонне.
  • При повышении паров через тарелки в колонне, он охлаждается.
  • Когда парообразное вещество достигает высоты, где температура в колонке равна температуре кипения этого вещества, оно будет конденсироваться с образованием жидкости. При этом, вещества с самой низкой температурой кипения будет конденсироваться в самой высокой точке в колонне, а вещества с более высокими температурами кипения будут конденсироваться ниже в колонне.
  • Лотки собирают различные жидкие фракции.
  • Собранные жидкие фракции могут перейти к конденсаторам, которые охлаждают их дальше, а потом идут в резервуары для хранения, либо же они могут отправиться в другие районы для дальнейшей химической переработки

Фракционная перегонка полезна для разделения смеси веществ с узкими различиями в температурах кипения и является наиболее важным шагом в процессе переработки нефти. Процесс переработки нефти начинается с дробной ректификационной колонны. Очень немногие из компонентов выйдут из колонны фракционной перегонки, готовые к продаже на рынке нефтепродуктов. Многие из них должны быть химически обработаны, чтобы быть преобразованными в другие фракции. Например, только 40% дистиллированной сырой нефти станет бензином, однако, бензин является одним из основных продуктов, производимых нефтяными компаниями. Вместо того, чтобы постоянно дистиллировать в больших количествах сырую нефть, нефтяные компании химически обрабатывают другие фракции из ректификационной колонны, чтобы получить тот же бензин; и эта обработка увеличивает выход бензина из каждого барреля сырой нефти.

Химическое преобразование

Вы можете преобразовать одну фракцию в другую с помощью одного из трёх методов:

  1. Разбить большие углеводороды на более мелкие (крекинг)
  2. Объединить мелкие углеводороды, чтобы сделать из них более крупные (унификация)
  3. Переставлять или замещать различные части углеводородов, чтобы получить нужные углеводороды (гидротермальное изменение)

Крекинг

Крекинг принимает большие углеводороды и ломает их на более мелкие. Есть несколько типов крекинга:

  • Тепловой - Вы нагреваете большие углеводороды при высоких температурах (иногда ещё и при высоких давлениях), пока они не распадутся.
  • Паровой - высокая температура пара (более 800 градусов по Цельсию) используется для разрыва этана, бутана и лигроина в этилен и бензол, которые используются для производства химических веществ.
  • Висбрекинг - остаточные вещества из дистилляционной колонны нагревают почти до 500 градусов по Цельсию, охлаждают и быстро сжигают в дистилляционной колонне. Этот процесс снижает вязкость веществ и число тяжёлых масел в них и производит смолы.
  • Коксование - остаточные вещества из дистилляционной колонны нагревают до температуры выше 450 градусов по Цельсию, в результате чего тяжёлый почти чистый углерод остаётся (кокс); кокс очищается от коксования и продаётся.
  • Катализация - используется катализатор для ускорения реакции крекинга. Катализаторы включают цеолит, гидросиликат алюминия, бокситы и алюмосиликат. Каталитический крекинг - это когда горячая жидкость катализатора (538 градусов по Цельсию) расщепляет тяжёлое вещество в дизельные масла и бензин.
  • Гидрокрекинг - подобен каталитическому крекингу, но использует другой катализатор с более низкими температурами, высоким давлением и водородом. Это позволяет расщепить тяжёлую нефть в бензин и керосин (авиатопливо).

Унификация

Иногда Вам нужно объединить мелкие углеводороды, чтобы получить из них более крупные - этот процесс называется унификацией. Основным процессом объединения является при этом каталитический риформинг и в этом случае используется катализатор (смесь из платины и платины-рения), чтобы объединить низкий вес нафты в ароматические соединения, которые используются в создании химических веществ и при смешивании бензина. Значительным побочным продуктом этой реакции является газообразный водород, который затем либо используется для гидрокрекинга, либо попросту продаётся.

Гидротермальное изменение

Иногда структуры молекул в одной фракции переставляются, чтобы произвести другую. Как правило, это делается с помощью процесса, называемого алкилированием . В алкилировании низкомолекулярные соединения, такие как пропилен и бутилен, смешивают в присутствии катализатора , такого как фтористо-водородная кислота или серная кислота (побочный продукт от удаления примесей из многих нефтепродуктов). Продуктами алкилирования являются высокооктановые углеводороды, которые используются в бензиновых смесях для повышения октанового числа.

Конечная обработка (очистка) нефтепродуктов

Дистиллированные и химически обработанные фракции нефти снова обрабатывают, чтобы удалить примеси - с основном, органические соединения, содержащие серу, азот, кислород, воду, растворённые металлы и неорганические соли. Конечную обработку, как правило, делают следующими путями:

  • Колонна серной кислоты удаляет ненасыщенные углеводороды (с двойными углерод-углеродными-облигациями), соединения азота, кислорода и остаточные твёрдые вещества (смолы, асфальт).
  • Абсорбционная колонна заполнена осушителем, чтобы удалить воду.
  • Сероводородные скрубберы удаляют серу и все соединения серы.

После того, как фракции будут обработаны, их охлаждают и затем смешивают вместе, чтобы сделать различные продукты, такие как:

  • Бензин различных марок, с добавками или без добавок.
  • Смазочные масла различных марок и типов (например, 10W-40, 5W-30).
  • Керосин различных марок.
  • Реактивное топливо.
  • Мазут.
  • Другие химические вещества различных марок для изготовления пластмасс и других полимеров.

С момента поступления на нефтеперерабатывающий завод нефть и получаемые из нее нефтепродукты проходят следующие основные этапы:

1. Подготовка нефти к переработке.

2. Первичная переработка нефти.

3. Вторичная переработка нефти.

4. Очистка нефтепродуктов.

Схема, отражающая взаимосвязь этих этапов, приведена на рис. 4.1.1.

Подготовка нефти к переработке заключается в ее дополнитель­ном обезвоживании и обессоливании. Необходимость дополнитель­ной подготовки обусловлена тем, что для обеспечения высоких пока­зателей работы установок по переработке нефти в них необходимо


Рис. 4.1.1. Технологические потоки современного НПЗ (упрощенная схема): I - подготовка нефти
к переработке; II
- первичная перегонка нефти; III - вторичная переработка нефти; IV - очистка
нефтепродуктов


Глава 4. Переработка нефти, газа и углеводородного сырья 173

Подавать сырье с содержанием солей не более 6 г/л и воды 0,2%. Поэто­му нефть, поступающую на нефтеперерабатывающий завод (НПЗ), под­вергают дополнительному обезвоживанию и обессоливанию.

Доведение содержания воды и солей до требуемых показателей осуществляется на электрообессоливающих установках (ЭЛОУ) сле­дующим образом. Нефть несколькими потоками с помощью насосов прокачивается через подогреватели, где нагревается отработавшим паром. После этого в поток добавляется деэмульгатор, и нефть посту­пает в отстойники, где от нее отделяется вода. Для вымывания солей в нефть добавляют щелочную воду. Основное ее количество затем от­деляют в электродегидраторе первой ступени. Окончательное обез­воживание нефти осуществляется в электродегидраторе второй сту­пени.

Переработка нефти начинается с ее перегонки (первичная пере­работка нефти). Нефть представляет собой сложную смесь большого количества взаимно растворимых углеводородов, имеющих различ­ные температуры начала кипения. В ходе перегонки, повышая темпе­ратуру, из нефти выделяют углеводороды, выкипающие в различных интервалах температур.

Для получения данных фракций применяют процесс, называемый ректификацией и осуществляемый в ректификационной колонне. Ректификационная колонна представляет собой вертикальный ци­линдрический аппарат высотой 20...30 м и диаметром 2...4 м. Внутрен­ность колонны разделена на отдельные отсеки большим количеством горизонтальных дисков, в которых имеются отверстия для прохож­дения через них паров нефти. Жидкость перемещается по сливным патрубкам.

Перед закачкой в ректификационную колонну нефть нагревают в трубчатой печи до температуры 350...360 °С. При этом легкие угле­водороды, бензиновая, керосиновая и дизельная фракции переходят в парообразное состояние, а жидкая фаза с температурой кипения выше 350 °С представляет собой мазут.

После ввода данной смеси в ректификационную колонну мазут сте­кает вниз, а углеводороды, находящиеся в парообразном состоянии, поднимаются вверх. Кроме того, вверх поднимаются пары углеводо­родов, испаряющиеся из мазута, нагреваемого в нижней части колон­ны до 350 "С.

Поднимаясь вверх, пары углеводородов за счет контакта с жидко­стью (орошением), подаваемой сверху, постепенно охлаждаются. По­этому их температура в верхней части колонны становится равной


174 Часть I. Основы нефтегазового дела

По мере остывания паров нефти конденсируются соответствующие углеводороды. Технологический процесс рассчитан таким образом, что в самой верхней части колонны конденсируется бензиновая фракция, ниже - керосиновая, еще ниже - фракция дизельного топлива. Несконденсировавшиеся пары направляются на газофракционирова­ние, где из них получают сухой газ (метан, этан), пропан, бутан и бензиновую фракцию.

Перегонка нефти с целью получения указанных фракций (по то­пливному варианту) производится на атмосферных трубчатых уста­новках (AT). Для более глубокой переработки нефти используются атмосферно-вакуумные трубчатые установки (АВТ), имеющие кро­ме атмосферного вакуумный блок, где из мазута выделяют масля­ные фракции (дистилляты), вакуумный газойль, оставляя в остатке гудрон.

Методы вторичной переработки нефти делятся на две группы - термические и каталитические.

К термическим методам относятся термический крекинг, коксо­вание и пиролиз.

Термический крекинг - это процесс разложения высокомолеку­лярных углеводородов на более легкие при температуре 470...540 °С и давлении 4...6 МПа. Сырьем для термического крекинга является ма­зут и другие тяжелые нефтяные остатки. При высоких температуре и давлении длинноцепочные молекулы сырья расщепляются. Продук­ты реакции разделяются с получением топливных компонентов, газа и крекинг-остатка.

Коксование - это форма термического крекинга, осуществляемо­го при температуре 450...550 °С и давлении 0,1...0,6 МПа. При этом по­лучаются газ, бензин, керосино-газойлевые фракции, а также кокс.

Пиролиз - это термический крекинг, проводимый при темпера­туре 750...900 °С и давлении, близком к атмосферному, с целью полу­чения сырья для нефтехимической промышленности. Сырьем для пи­ролиза являются легкие углеводороды, содержащиеся в газах, бензи­ны первичной перегонки, керосины термического крекинга, керосино-газойлевая фракция. Продукты реакции разделяются с по­лучением индивидуальных непредельных углеводородов (этилен, про­пилен и др.). Из жидкого остатка, называемого смолой пиролиза, мо­гут быть извлечены ароматические углеводороды.

К каталитическим методам относятся каталитический крекинг, риформинг.

Каталитический крекинг - это процесс разложения высокомоле­кулярных углеводородов при температурах 450...500 °С и давлении


Глава 4. Переработка нефти, газа и углеводородного сырья 175

0,2 МПа в присутствии катализаторов - веществ, ускоряющих реак­цию крекинга и позволяющих осуществлять ее при более низких, чем при термическом крекинге, давлениях.

В качестве катализаторов используются, в основном, алюмосили­каты и цеолиты.

Сырьем для каталитического крекинга являются вакуумный га­зойль, а также продукты термического крекинга и коксования мазу­тов и гудронов. Получаемые продукты - газ, бензин, кокс, легкий и тяжелый газойли.

Риформинг - это каталитический процесс переработки низкоок­тановых бензиновых фракций, осуществляемый при температуре око­ло 500 °С и давлении 2...4 МПа. В результате структурных преобразо­ваний октановое число углеводородов в составе катализата резко по­вышается. Данный катализат является основным высокооктановым компонентом товарного автомобильного бензина. Кроме того, из ка­тализата могут быть выделены ароматические углеводороды (бензол, толуол, этилбензол, ксилолы).

Гидрогенизационными называются процессы переработки неф­тяных фракций в присутствии водорода, вводимого в систему извне. Гидрогенизационные процессы протекают в присутствии катализа­торов при температуре 260...430 °С и давлении 2...32 МПа.

Применение гидрогенизационных процессов позволяет углубить переработку нефти, обеспечив увеличение выхода светлых нефтепро­дуктов, а также удалить нежелательные примеси серы, кислорода, азота (гидроочистка).

Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. Состав и концентрация примесей, содержащихся в дистиллятах, за­висят от вида используемого сырья, применяемого процесса его пере­работки, технологического режима установки. Для удаления вредных примесей дистилляты подвергаются очистке.

Для очистки светлых нефтепродуктов применяются следующие процессы:

1) щелочная очистка (выщелачивание);

2) кислотно-щелочная очистка;

3) депарафинизация;

4) гидроочистка;

5) ингибирование.

Щелочная очистка заключается в обработке бензиновых, керосино-вых и дизельных фракций водными растворами каустической или каль­цинированной соды. При этом из бензинов удаляют сероводород и час-


176 Часть I. Основы нефтегазового дела

Тично меркаптаны, из керосинов и дизельного топлива - нафтеновые кислоты.

Кислотно-щелочная очистка применяется с целью удаления из дис­тиллятов непредельных и ароматических углеводородов, а также смол. Заключается она в обработке продукта сначала серной кислотой, а затем - в ее нейтрализации водным раствором щелочи.

Депарафинизация используется для понижения температуры за­стывания дизельных топлив и заключается в обработке дистиллята раствором карбамида. В ходе реакции парафиновые углеводороды об­разуют с карбамидом соединение, которое сначала отделяется от про­дукта, а затем при нагревании разлагается на парафин и карбамид.

Гидроочистка применяется для удаления сернистых соединений из бензиновых, керосиновых и дизельных фракций. Для этого в систему при температуре 350...430 °С и давлении 3...7 МПа в присутствии ката­лизатора вводят водород. Он вытесняет серу в виде сероводорода.

Гидроочистку применяют также для очистки продуктов вторично­го происхождения от непредельных соединений.

Ингибирование применяется для подавления реакций окисления и полимеризации непредельных углеводородов в бензинах термиче­ского крекинга путем введения специальных добавок.

Для очистки смазочных масел применяют следующие процессы:

1) селективную очистку растворителями;

2) депарафинизацию;

3) гидроочистку;

4) деасфальтизацию;

5) щелочную очистку.

Селективными растворителями называют вещества, которые об­ладают способностью извлекать при определенной температуре из нефтепродукта только какие-то определенные компоненты, не рас­творяя других компонентов и не растворяясь в них.

Очистка производится в экстракционных колоннах, которые бы­вают либо полыми внутри, либо с насадкой или тарелками различно­го типа.

Для очистки масел применяют следующие растворители: фурфу­рол, фенол, пропан, ацетон, бензол, толуол и др. С их помощью из масел удаляют смолы, асфальтены, ароматические углеводороды и твердые парафиновые углеводороды.

В результате селективной очистки образуются две фазы: полезные компоненты масла (рафинат) и нежелательные примеси (экстракт).

Депарафинизации подвергают рафинаты селективной очистки, по­лученные из парафинистой нефти и содержащие твердые углеводо-


Глава 4. Переработка нефти, газа и углеводородного сырья 177

Роды. Если этого не сделать, то при понижении температуры масла теряют подвижность и становятся непригодными для эксплуатации.

Депарафинизация осуществляется фильтрацией после предвари­тельного охлаждения продукта, разбавленного растворителем.

Целью гидроочистки является улучшение цвета и стабильности ма­сел, повышение их вязкостно-температурных свойств, снижение кок­суемости и содержания серы. Сущность данного процесса заключа­ется в воздействии водорода на масляную фракцию в присутствии ка­тализатора при температуре, вызывающей распад сернистых и других соединений.

Деасфальтизация полугудрона производится с целью их очистки от асфальто-смолистых веществ. Для разделения полугудрона на де-асфальтизат (масляная фракция) и асфальт применяется экстракция легкими углеводородами (например, сжиженным пропаном).

Щелочная очистка применяется для удаления из масел нафтено­вых кислот, меркаптанов, а также для нейтрализации серной кисло­ты и продуктов ее взаимодействия с углеводородами, остающимися после деасфальтизации.


Похожая информация.


Нефть разделяется на фракции для получения нефтепродуктов в два этапа, то есть перегонка нефти проходит через первичную и вторичную обработку.

Процесс первичной нефтепереработки

На этом этапе перегонки производится предварительное обезвоживание и обессоливание сырой нефти на специальном оборудовании для выделения солей и остальных примесей, которые могут вызывать коррозию аппаратуры и снижать качество продуктов нефтепереработки. После этого в нефти содержится всего 3-4 мг солей на литр и не более 0,1 % воды. Подготовленный продукт готов к перегонке.

По причине того, что жидкие углеводороды кипят при различной температуре, это свойство используется при перегонке нефти, чтобы выделить из нее отдельные фракции при разных фазах кипения. Перегонка нефти на первых нефтеперерабатывающих предприятиях давала возможность выделять следующие фракции в зависимости от температуры: бензин (выкипает при 180°С и ниже), реактивное топливо (выкипает при 180-240°С) и дизтопливо (выкипает при 240-350°С). От перегонки нефти остается мазут.

В процессе перегонки нефть разделяется по на фракции (составные части). В результате получаются товарные нефтепродукты или их компоненты. Перегонка нефти является начальным этапом ее переработки на специализированных заводах.

При нагревании образуется паровая фаза, состав которой отличен от жидкости. Получаемые перегонкой нефти фракции обычно являются не чистым продуктом, а смесью углеводородов. Отдельные углеводороды удается выделить только благодаря многократной перегонке нефтяных фракций.

Прямая перегонка нефти выполняется

Методом однократного испарения (так называемая, равновесная дистилляция) или простой перегонки (фракционная дистилляция);

С использованием ректификации и без нее;

С помощью испаряющего агента;

Под вакуумом и при атмосферном давлении.

Равновесная дистилляция менее четко разделяет нефть на фракции, чем простая перегонка. При этом в парообразное состояние при одинаковой температуре в первом случае переходит больше нефти, чем во втором.

Фракционная перегонка нефти дает возможность получить различное для дизельных и реактивных двигателей), а также сырье (бензол, ксилолы, этилбензол, этилен, бутадиен, пропилен), растворители и другие продукты.

Процесс вторичной нефтепереработки

Вторичная перегонка нефти проводится способом химического или термического каталитического расщепления тех продуктов, что выделены из нее в результате первичной нефтеперегонки. При этом получается большее количество бензиновых фракций, а также сырье для производства ароматических углеводородов (толуола, бензола и других). Самой распространенной технологией вторичной нефтепереработки нефти является крекинг.

Крекингом называют процесс высокотемпературной переработки нефти и выделенных фракций для получения (в основном) продуктов, у которых меньшая К ним можно отнести моторное топливо, масла для смазки и т. п., сырье для нефтехимической и химической промышленности. Протекание крекинга проходит с разрывом С—С связей и образованием карбанионов или свободных радикалов. Разрыв связей С—С выполняется одновременно с дегидрированием, изомеризацией, полимеризацией и конденсацией промежуточных и исходных веществ. Последние два процесса образуют крекинг-остаток, т.е. фракцию с температурой кипения выше 350°C и кокс.

Перегонка нефти методом крекинга была запатентована в 1891 году В. Г. Шуховым и С. Гавриловым, затем эти инженерные решения повторил У. Бартон при сооружении в США первой промышленной установки.

Крекинг проводится посредством нагревания сырья или воздействия катализаторов и высокой температуры.

Крекинг позволяет выделить из мазута больше полезных составляющих.

Введение

I. Первичная переработка нефти

1. Вторичная перегонка бензиновой и дизельной фракции

1.1 Вторичная перегонка бензиновой фракции

1.2 Вторичная перегонка дизельной фракции

II. Термические процессы технологии переработки нефти

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

2.1 Процессы замедленного коксования

2.2 Коксование в слое теплоносителя

III. Термокаталитические и термогидрокаталитические процессы технологии

переработки нефти

3. Гидроочистка керосиновых фракций

IV. Технологии переработки газов

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие (ГФУ) установки

4.1 Газофракционирующие установки (ГФУ)

4.2 Абсорбционно-газофракционирующие установки (АГФУ)

Заключение

Список используемой литературы


Введение

Нефтяная промышленность сегодня - это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания - около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле- или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли - тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

Нефть - наше национальное богатство, источник могущества страны, фундамент ее экономики.

технология переработка нефть газ


I . Первичная переработка нефти

1. Вторичная перегонка бензиновой и дизельной фракции

Вторичная перегонка - разделение фракций, полученных при первичной перегонке, на более узкие погоны, каждый из которых затем используется по собственному назначению.

На НПЗ вторичной перегонке подвергаются широкая бензиновая фракция, дизельная фракция (при получении сырья установки адсорбционного извлечения парафинов), масляные фракции и т.п. Процесс проводится на отдельных установках или блоках, входящих в состав установок АТ и АВТ.

Перегонка нефти – процесс разделения ее на фракции по температурам кипения (отсюда термин «фракционирование») – лежит в основе переработки нефти и получения при этом моторного топлива, смазочных масел и различных других ценных химических продуктов. Первичная перегонка нефти является первой стадией изучения ее химического состава.

Основные фракции, выделяемые при первичной перегонке нефти:

1. Бензиновая фракция – нефтяной погон с температурой кипения от н.к. (начала кипения, индивидуального для каждой нефти) до 150-205 0 С (в зависимости от технологической цели получения авто-, авиа-, или другого специального бензина).

Эта фракция представляет собой смесь алканов, нафтенов и ароматических углеводородов. Во всех этих углеводородах содержится от 5 до 10 атомов С.

2. Керосиновая фракция – нефтяной погон с температурой кипения от 150-180 0 С до 270-280 0 С. В этой фракции содержатся углеводороды С10-С15.

Используется в качестве моторного топлива (тракторный керосин, компонент дизельного топлива), для бытовых нужд (осветительный керосин) и др.

3. Газойлевая фракция – температура кипения от 270-280 0 С до 320-350 0 С. В этой фракции содержатся углеводороды С14-С20. Используется в качестве дизельного топлива.

4. Мазут – остаток после отгона выше перечисленных фракций с температурой кипения выше 320-350 0 С.

Мазут может использоваться как котельное топливо, или подвергаться дальнейшей переработке – либо перегонке при пониженном давлении (в вакууме) с отбором масляных фракций или широкой фракции вакуумного газойля (в свою очередь, служащего сырьем для каталитического крекинга сцелью получения высокооктанового компонента бензина), либо крекингу.

5. Гудрон - почти твердый остаток после отгона от мазута масляных фракций. Из него получают так называемые остаточные масла и битум, из которого путем окисления получают асфальт, используемый при строительстве дорог и т.п. Из гудрона и других остатков вторичного происхождения может быть получен путем коксования кокс, применяемый в металлургической промышленности.

1 .1 Вторичная перегонка бензиновой фракции

Вторичная перегонка бензинового дистиллята представляет собой либо самостоятельный процесс, либо является частью комбинированной установки входящей в состав нефтеперерабатывающего завода. На современных заводах установки вторичной перегонки бензинового дистиллята предназначены для получения из него узких фракций. Эти фракции используют в дальнейшем как сырье каталитического риформинга - процесса, в результате которого получают индивидуальные ароматические углеводороды - бензол, толуол, ксилолы, либо бензин с более высоким октановым числом. При производстве ароматических углеводородов исходный бензиновый дистиллят разделяют на фракции с температурами выкипания: 62-85°С (бензольную), 85-115 (120) °С (толуольную) и 115 (120)-140 °С (ксилольную).

Бензиновая фракцияиспользуется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций, путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец (IV), Рb(С 2 Н 5) 4 . Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлорэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца (II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом (II), образуя бромид свинца (II). Поскольку бромид свинца (II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом прокачивается через теплообменники и подается в первый змеевик печи, а затем в ректификационную колонну. Головной продукт этой колонны - фракция н. к. - 85 °С, пройдя аппарат воздушного охлаждения и холодильник, поступает в приемник. Часть конденсата насосом подается как орошение на верх колонны, а остальное количество - в другую колонну. Снабжение теплом нижней части колонны осуществляется циркулирующей флегмой (фракция 85- 180 °С), прокачиваемой насосом через второй змеевик печи и подается в низ колонны, Остаток с низа колонны направляется насосом в другую колонну.

Уходящие с верха колонны, пары головной фракции (н. к. - 62 °С) конденсируются в аппарате воздушного охлаждения; конденсат, охлажденный в водяном холодильнике, собирается в приемнике. Отсюда конденсат насосом направляется в резервуар, а часть фракции служит орошением для колонны. Остаточный продукт - фракция 62- 85 °С - по выходе из колонны снизу направляется насосом через теплообменник и холодильники в резервуар. В качестве верхнего продукта колонны получают фракцию 85-120 °С, которая, пройдя аппараты, поступает в приемник. Часть конденсата возвращается на вверх колонны в качестве орошения, а балансовое его количество отводится с установки насосом в резервуар.