Кислород как химический элемент входит в состав. Кислород: физические и химические свойства

Четыре элемента-«халькогена» (т.е. «рождающих медь») возглавляют главную подгруппу VI группы (по новой классификации - 16-ю группу) периодической системы. Кроме серы, теллура и селена к ним также относится кислород. Давайте подробно разберем свойства этого наиболее распространенного на Земле элемента, а также применение и получение кислорода.

Распространенность элемента

В связанном виде кислород входит в химический состав воды - его процентное соотношение составляет порядка 89%, а также в состав клеток всех живых существ - растений и животных.

В воздухе кислород находится в свободном состоянии в виде О2, занимая пятую часть его состава, и в виде озона - О3.

Физические свойства

Кислород О2 представляет собой газ, который не обладает цветом, вкусом и запахом. В воде растворяется слабо. Температура кипения - 183 градуса ниже нуля по Цельсию. В жидком виде кислород имеет голубой цвет, а в твердом виде образует синие кристаллы. Температура плавления кислородных кристаллов составляет 218,7 градуса ниже нуля по Цельсию.

Химические свойства

При нагревании этот элемент реагирует со многими простыми веществами, как металлами, так и неметаллами, образуя при этом так называемые оксиды - соединения элементов с кислородом. в которую элементы вступают с кислородом, называется окислением.

Например,

4Na + О2= 2Na2O

2. Через разложение перекиси водорода при нагревании ее в присутствии оксида марганца, выступающего в роли катализатора.

3. Через разложение перманганата калия.

Получение кислорода в промышленности проводится такими способами:

1. Для технических целей кислород получают из воздуха, в котором обычное его содержание составляет порядка 20%, т.е. пятую часть. Для этого воздух сначала сжигают, получая смесь с содержанием жидкого кислорода около 54%, жидкого азота - 44% и жидкого аргона - 2%. Затем эти газы разделяют с помощью процесса перегонки, используя сравнительно небольшой интервал между температурами кипения жидкого кислорода и жидкого азота - минус 183 и минус 198,5 градуса соответственно. Получается, что азот испаряется раньше, чем кислород.

Современная аппаратура обеспечивает получение кислорода любой степени чистоты. Азот, который получается при разделении жидкого воздуха, используется в качестве сырья при синтезе его производных.

2. также дает кислород очень чистой степени. Этот способ получил распространение в странах с богатыми ресурсами и дешевой электроэнергией.

Применение кислорода

Кислород является основным по значению элементом в жизнедеятельности всей нашей планеты. Этот газ, который содержится в атмосфере, расходуется в процессе животными и людьми.

Получение кислорода очень важно для таких сфер деятельности человека, как медицина, сварка и резка металлов, взрывные работы, авиация (для дыхания людей и для работы двигателей), металлургия.

В процессе хозяйственной деятельности человека кислород расходуется в больших количествах - например, при сжигании различных видов топлива: природного газа, метана, угля, древесины. Во всех этих процессах образуется При этом природа предусмотрела процесс естественного связывания данного соединения с помощью фотосинтеза, который проходит в зеленых растениях под действием солнечного света. В результате этого процесса образуется глюкоза, которую растение потом расходует для строительства своих тканей.

Элементы, расположенные в главной подгруппе VI группы периодической системы элементов Д. И. Менделеева.

Распределение электронов по энергетическим уравнениям атомов элементов группы кислородаТаблица 13

Элемент

Заряд ядра

Энергетические уровни

Радиус атома Å

K

L

M

N

O

0,60

1,04

1,16

1,43

Рассмотрение атомных структур элементов главной подгруппы VI группы показывает, что все они имеют шестиэлектронную структуру внешнего слоя (табл. 13) и в связи с этим обладают сравнительно высокими значениями электроотрицательности. Наибольшей электроотрицательностью обладает , наименьшей - , что объясняется изменением величины атомного радиуса. Особое место кислорода в этой группе подчеркивается тем, что , и теллур могут непосредственно соединяться с кислородом, но не могут соединяться между собой.

Элементы группы кислорода также принадлежат к числу р -элементов, так как у них достраивается р -оболочка. Для всех элементов семейства, кроме самого кислорода, валентными являются 6 электронов внешнего слоя.
В окислительно-восстановительных реакциях элементы группы кислорода часто проявляют окислительные свойства. Наиболее сильно окислительные свойства выражены у кислорода.
Для всех элементов главной подгруппы VI группы характерна отрицательная степень окисления -2. Однако для серы, селена и теллура наряду с этим возможны и положительные степени окисления (максимальная +6).
Молекула кислорода, как всякого простого газа, двухатомна, построена по типу ковалентной связи, образованной посредством двух электронных пар. Следовательно, кислород двухвалентен при образовании простого .
Сера - твердое вещество. В состав молекулы входит 8 атомов серы (S8), но они соединены в своеобразное кольцо, в котором каждый атом серы соединен лишь с двумя соседними атомами ковалентной связью

Таким образом, каждый атом серы, имея с двумя соседними атомами по одной общей электронной паре, сам по себе является двухвалентным. Сходные молекулы образуют селен (Se8) и теллур (Te8).

1. Составьте рассказ о группе кислорода по следующему плану: а) положение в периодической системе; б) заряды ядер и. число нейтронов в ядре; в) электронные конфигурации; г) структура кристаллической решетки; д) возможные степени окисления кислорода и всех остальных элементов этой группы.
2. В чем сходство и различие атомных структур и электронных конфигураций атомов элементов главных подгрупп VI и VII групп?
3. Сколько валентных электронов имеется у элементов главной подгруппы VI группы?
4. Как должны себя вести элементы главной подгруппы VI группы в окислительно-восстановительных реакциях?
5. Какой из элементов главной подгруппы VI группы является наиболее электроотрицательным?

При рассмотрении элементов главной подгруппы VI группы мы впервые встречаемся с явлением аллотропии. Один и тот же элемент в свободном состоянии может образовывать два или несколько простых веществ. Такое явление называется аллотропией, а сами называются аллотропными видоизменениями.

Запишите эту формулировку в тетрадь.

Например, элемент кислород способен образовывать два простых - кислород и озон.
Формула простого кислорода O2, формула простого вещества озона O3. Построены их молекулы по разному:


Кислород и озон - аллотропные видоизменения элемента кислорода.
Сера также может образовывать несколько аллотропных видоизменений (модификаций). Известна ромбическая (октаэдрическая), пластическая и моноклиническая сера. Селен и теллур также образуют несколько аллотропных видоизменений. Следует заметить, что явление аллотропии характерно для многих элементов. Различия в свойствах разных аллотропных видоизменений мы рассмотрим при изучении элементов.

6. В чем отличие структуры молекулы кислорода от структуры молекулы озона?

7. Какого типа связь в молекулах кислорода и озона?

Кислород. Физические свойства, физиологическое действие, значение кислорода в природе

Кислород - наиболее легкий элемент главной подгруппы VI группы. Атомный вес кислорода 15,994. 31,988. Атом кислорода имеет самый малый радиус из элементов этой подгруппы (0,6 Å). Электронная конфигурация атома кислорода: ls 2 2s 2 2p 4 .

Распределение электронов по орбиталям второго слоя указывает на , что кислород имеет на р-орбиталях два непарных электрона, которые могут быть легко использованы на образование химической связи между атомами. Характерная степень окисления кислорода.
Кислород представляет собой газ, не имеющий цвета и запаха. Он тяжелее воздуха, при температуре -183° превращается в жидкость голубого цвета, а при температуре -219° затвердевает.

Плотность кислорода равна 1,43 г/л. Кислород плохо растворим в воде: в 100 объемах воды при 0° растворяются 3 объема кислорода. Поэтому кислород можно держать в газометре (рис. 34) - приборе для хранения газов, нерастворимых и малорастворимых в воде. Чаще всего в газометре хранят кислород.
Газометр состоит из двух главных частей: сосуда 1, служащего для хранения газа, и большой воронки 2 с краном и с длинной трубкой, доходящей почти до дна сосуда 1 и служащей для подачи воды в прибор. Сосуд 1 имеет три тубуса: в тубус 3 с притертой внутренней поверхностью вставляют, воронку 2 с краном, в тубус 4 вставляют газоотводную трубку, снабженную краном; тубус 5 внизу служит для выпуска воды из прибора при его зарядке и разрядке. В заряженном газометре сосуд 1 заполнен кислородом. На дне сосуда находится , в которую опущен конец трубки воронки 2.

Рис. 34.
1 - сосуд для хранения газа; 2 - воронка для подачи воды; 3 - тубус с притертой поверхностью; 4 - тубус для выведения газа; 5 - тубус для выпуска воды при зарядке аппарата.

Если нужно получить из газометра кислород, сначала открывают кран воронки, и слегка сжимает кислород, находящийся в газометре. Затем открывают кран на газоотводной трубке, через который выходит кислород, вытесняемый водой.

В промышленности кислород хранят в стальных баллонах в сжатом состоянии (рис. 35, а), или в жидком виде в кислородных «танках» (рис. 36).

Рис. 35. Кислородный баллон

Выпишите из текста названия приборов, предназначенных для хранения кислорода.
Кислород является наиболее распространенным элементом. Он составляет почти 50% веса всей земной коры (рис. 37). Человеческий организм содержит 65% кислорода, входящего в состав различных органических веществ, из которых построены ткани и органы. В воде около 89% кислорода. В атмосфере на кислород приходится 23% по весу и 21% по объему. Кислород входит в состав самых разнообразных горных пород (например, известняка, мела, мрамора CaCO3, песка SiO2), руд различных металлов (магнитного железняка Fe3O4, бурого железняка 2Fe2O3 · nH2O, красного железняка Fe2O3, боксита Аl2O3 · nН2O и т. д.). Кислород входит в состав большинства органических веществ.

Физиологическое значение кислорода огромно. Это единственный газ, который живые организмы могут использовать для дыхания. Отсутствие кислорода вызывает остановку жизненных процессов и гибель организма. Без кислорода человек может прожить всего несколько минут. При дыхании поглощается кислород, который принимает участие в окислительно-восстановительных процессах, происходящих в организме, а выделяются продукты окисления органических веществ - , двуокись углерода и другие вещества. Как наземные, так и водные живые организмы дышат кислородом: наземные - свободным кислородом атмосферы, а водные - кислородом, растворенным в воде.
В природе происходит своеобразный круговорот кислорода. Кислород из атмосферы поглощается животными, растениями, человеком, расходуется на процессы горения топлива, гниение и прочие окислительные процессы. Двуокись углерода и вода, образующиеся в процессе окисления, потребляются зелеными растениями, в которых с помощью хлорофилла листьев и солнечной энергии осуществляется процесс фотосинтеза, т. е. синтеза органических веществ из двуокиси углерода и воды, сопровождающегося выделением кислорода.
Для обеспечения кислородом одного человека нужны кроны двух больших деревьев. Зеленые растения поддерживают постоянный состав атмосферы.

8. Каково значение кислорода в жизни живых организмов?
9. Как пополняется запас кислорода в атмосфере?

Химические свойства кислорода

Свободный кислород, вступая в реакции с простыми и сложными веществами, ведет себя обычно как .

Рис. 37.

Степень окисления, которую он приобретает при этом, всегда -2. В непосредственное взаимодействие с кислородом вступают многие элементы, за исключением благородных металлов, элементов с близкими к кислороду значениями электроотрицательности () и инертных элементов.
В результате соединения кислорода с простыми и сложными веществами образуются . Многие горят в кислороде, хотя на воздухе либо не горят, либо горят очень слабо. сгорает в кислороде ярко-желтым пламенем; при этом образуется перекись натрия (рис. 38):
2Na + O2 =Na2O2,
Сера горит в кислороде ярко-голубым пламенем с образованием сернистого ангидрида:
S + O2 = SO2
Древесный уголь на воздухе едва тлеет, а в кислороде сильно раскаляется и сгорает с образованием двуокиси углерода (рис. 39):
С + O2 = СO2

Рис. 36.

Горит в кислороде белым, ослепительно ярким пламенем, причем образуется твердая белая пятиокись фосфора:
4Р + 5O2 = 2Р2O5
горит в кислороде, разбрасывая искры и образуя железную окалину (рис. 40).
Горят в кислороде и органические вещества, например метан СН4, входящий состав природного газа: СH4 + 2O2 = CO2 + 2H2O
Горение в чистом кислороде происходит гораздо интенсивнее, чем на воздухе, и позволяет получить Значительно более высокие температурь. Это явление используют для интенсификации ряда химических процессов и более эффективного сжигания топлива.
В процессе дыхания кислород, соединяясь с гемоглобином крови, образует оксигемоглобин, который, являясь весьма нестойким соединением, легко разлагается в тканях с образованием свободного кислорода, идущего на окисление. Гниение, также являются окислительными процессами, протекающими с участием кислорода.
Распознают чистый кислород, внося в сосуд, где предполагается его наличие, тлеющую лучинку. Она ярко вспыхивает - это и является качественной пробой на кислород.

10. Каким образом, имея в своем распоряжении лучинку, можно распознать находящиеся в разных сосудах кислород, двуокись углерода? 11. Какой объем кислорода пойдет на сжигание 2 кг каменного угля, содержащего в сечем составе 70% углерода, 5% водорода, 7% , кислорода, остальное- негорючие компоненты?

Рис. 38. Горение натрия Рис. 39. Горение угля Рис. 40. Горение железа в кислороде.

12. Хватит ли 10 л кислорода для сжигания 5 г фосфора?
13. 1 м3 газовой смеси, содержащей 40% окиси углерода, 20% азота, 30% водорода н 10% двуокиси углерода сожгли в кислороде. Какой объем кислорода был израсходован?
14. Можно ли сушить кислород, пропуская его через: а) серную кислоту, б) хлорид кальция, в) фосфорный ангидрид, г) металлический ?
15. Как освободить двуокись углерода от примеси кислорода и наоборот, как освободить кислород от примеси двуокиси углерода?
16. 20 л кислорода, содержащего примесь двуокиси углерода пропустили через 200 мл 0,1 н. раствора бария. В результате катион Ва 2+ был полностью осажден. Сколько двуокиси углерода (в процентах) содержал исходный кислород?

Получение кислорода

Получают кислород несколькими способами. В лаборатории кислород получают из Кислородсодержащих веществ, которые могут легко его отщеплять, например из перманганата калия КМnO4 (рис. 41) или из бертолетовой соли КСlO3:
2КМnО4 = K2MnO4 + МnО2 + O2

2КСlO3 = 2КСl + O2
При получении кислорода из бертолетовой соли для ускорения реакции должен присутствовать катализатор - двуокись марганца. Катализатор ускоряет разложение и делает его более равномерным. Без катализатора может

Рис. 41. Прибор для получения кислорода лабораторный способом из перманганата калия. 1 - перманганат калия; 2 - кислород; 3 - вата; 4 - цилиндр - сборник.

произойти взрыв, если бертолетова соль взята в большом количестве и особенно если она загрязнена органическими веществами.
Из перекиси водорода кислород получают также в присутствии катализатора - двуокиси марганца МnО2 по уравнению:
2Н2O2[МnО2] = 2Н2O + О2

■ 17. Зачем при разложении бертолетовой соли добавляют МnО2?
18. Образующийся при разложении КМnO4 кислород можно собирать над водой. Отразите это в схеме прибора.
19. Иногда при отсутствии в лаборатории двуокиси марганца вместо нее в бертолетову соль добавляют немного остатка после прокаливания перманганата калия. Почему возможна такая замена?
20. Какой объем кислорода выделится при разложении 5 молей бертолетовой соли?

Кислород может быть получен также разложением Нитратов при нагревании выше температуры плавления:
2KNO3 = 2KNO2 + О2
В промышленности кислород получают в основном из жидкого воздуха. Переведенный в жидкое состояние воздух подвергают испарению. Сначала улетучивается (его температура кипения - 195,8°), а кислород остается (его температура кипения -183°). Этим способом кислород получается почти в чистом виде.
Иногда при наличии дешевой электроэнергии кислород получают электролизом воды:
Н2O ⇄ Н + + OН —
Н + + е — → Н 0
на катоде
2ОН — — е — → H2O + О; 2О = О2
на аноде

■ 21. Перечислите известные вам лабораторные и промышленные способы получения кислорода. Запищите их в тетрадь, сопровождая каждый способ уравнением реакции.
22. Являются ли реакции, используемые для получения кислорода, окислительно-восстановительными? Дайте обоснованный ответ.
23. Взято по 10 г следующих веществ; перманганата калия, бертолетовой соли, нитрата калия. В каком случае удастся получить наибольший объем кислорода?
24. В кислороде, полученном при нагревании 20 г перманганата калия, сожгли 1 г угля. Какой процент перманганата подвергся разложению?

Кислород - самый распространенный элемент в природе. Он широко применяется в медицине, химии, промышленности и т. д. (рис. 42).

Рис. 42. Применение кислорода.

Летчики на больших высотах, люди, работающие в атмосфере вредных газов, занятые на подземных и подводных работах, пользуются кислородными приборами (рис. 43).

В тех случаях, когда затруднено вследствие того или иного заболевания, человеку дают дышать чистым кислородом из кислородной подушки или помещают его в кислородную палатку.
В настоящее время для интенсификации металлургических процессов широко применяют воздух, обогащенный кислородом, или чистый кислород. Кислородно-водородная и кислородно-ацетиленовая горелки применяются для сварки и резки металлов. Пропитывая жидким кислородом горючие вещества: древесные опилки, угольный порошок и пр., получают взрывчатые смеси, называемые оксиликвитами.

■ 25. Начертите таблицу в тетради и заполните её.

Озон О3

Как уже говорилось, элемент кислород может образовывать еще одно аллотропное видоизменение - озон О3. Озон кипит при -111°, а затвердевает при -250°. В газообразном состоянии он голубого цвета, в жидком - синего. озона в воде гораздо выше, чем кислорода: в 100 объемах воды растворяется 45 объемов озона.

Озон отличается от кислорода тем, что его молекула состоит из трех, а не двух атомов. В связи с этим молекула кислорода намного более стойкая, чем молекула озона. Озон легко распадается по уравнению:
О3 = О2 + [O]

Выделение атомарного кислорода при распаде озона делает его гораздо более сильным окислителем, чем кислород. Озон имеет запах-свежести («озон» в переводе значит «пахучий»). В природе он образуется под действием тихого электрического разряда и в сосновых лесах. Больным с заболеванием легких рекомендуется больше бывать в сосновых лесах. Однако продолжительное пребывание в атмосфере, сильно обогащенной озоном, может оказать отравляющее действие на организм. Отравление сопровождается головокружением, тошнотой, кровотечением из носа. При хрони-ческих отравлениях могут возникнуть сердечные заболевания.
В лаборатории озон получают из кислорода в озонаторах (рис. 44). В стеклянную трубку 1, обмотанную сна- ружи проволокой 2, пропускают кислород. Внутри трубки проходит проволока 3. Обе эти проволоки: соединены с полюсами источника тока, создающего на указанных электродах высокое напряжение. Между электродами происходит тихий электрический разряд, благодаря чему из кислорода образуется озон.

Рис 44; Озонатор. 1 - стеклянный баллон; 2 - наружная обмотка; 3 -проволока внутри трубки; 4 - раствор йодида калия с крахмалом

3О2 = 2О3
Озон является очень сильным окислителем. Он значительно энергичнее, чем кислород, вступает в реакции и вообще намного активнее кислорода. Например, в отличие от кислорода он может вытеснить из йодистого водорода или йодистых солей:
2KI + О3 + Н2О = 2КОН + I2 + O2

Озона в атмосфере очень мало (около одной миллионной доли процента), но он играет существенную, роль в поглощении ультрафиолетовых солнечных лучей, по-этому они попадают на землю в меньшем количестве и не оказывают губительного действия на живые организмы.
Применяется озон в небольшом количестве главным образом для кондиционирования воздуха, а также в химии.

■ 26. Что такое аллотропные видоизменения?
27. Почему йодкрахмальная бумага синеет под действием озона? Дайте обоснованный ответ.
28. Почему молекула кислорода значительно устойчивее молекулы озона? Обоснуйте свой ответ с точки зрения внутримолекулярной структуры.

Кислород поддерживает процессы дыхания и горения. В кислороде горят многие неметаллы. Например, уголь горит на воздухе, взаимодействуя при этом с кислородом. В результате этой реакции образуется углекислый газ и выделяется теплота. Известно, что теплота обозначается буквой «Q». Если в результате реакции теплота выделяется, то в уравнении пишут « Q», если поглощается – то «-Q».

Теплота, которая выделяется или поглощается в ходе химической реакции , называется тепловым эффектом химической реакции.

Реакции, протекающие с выделением теплоты, называются экзотермическими .

Реакции, протекающие с поглощением теплоты, называются эндотермическими .

Взаимодействие кислорода с неметаллами

Уравнение реакции горения угля на воздухе:

С О 2 = СО 2 Q

Если сжечь уголь в сосуде с кислородом, то в этом случае уголь сгорит быстрее, чем на воздухе. То есть, скорость горения угля в кислороде выше, чем на воздухе.

Сера тоже горит на воздухе, при этом также выделяется теплота. Значит, реакцию взаимодействия серы с кислородом можно назвать экзотермической. В чистом кислороде сера сгорает быстрее, чем на воздухе.

Уравнение реакции горения серы в кислороде, если при этом образуется оксид серы (IV):

S O 2 = SO 2 Q

Аналогично, можно провести реакцию горения фосфора на воздухе или в кислороде. Эта реакция также является экзотермической. Ее уравнение, если в результате образуется оксид фосфора (V):

4Р 5О 2 = 2Р 2 О 5 Q

Взаимодействие кислорода с металлами

В атмосфере кислорода могут гореть некоторые металлы. Например, железо сгорает в кислороде с образованием железной окалины:

3Fe 2O 2 = Fe 3 O 4 Q

А вот медь не горит в кислороде, а окисляется кислородом при нагревании. При этом образуется оксид меди (II):

2Cu O 2 = 2CuO

Взаимодействие кислорода со сложными веществами

Кислород способен реагировать не только с простыми, но и со сложными веществами.

Природный газ метан сгорает в кислороде с образованием оксида углерода (IV) и воды:

CH 4 2O 2 = CO 2 2H 2 O Q

При неполном сгорании метана (в условиях недостаточного количества кислорода) образуется не углекислый, а угарный газ СО. Угарный газ – ядовитое вещество, чрезвычайно опасное для человека, т.к. человек не ощущает его отравляющего действия, а медленно засыпает с потерей сознания.

Реакции простых и сложных веществ с кислородом называют окислением. При взаимодействии простых и сложных веществ с кислородом, как правило, образуются сложные вещества, состоящие из двух элементов, одним из которых является кислород. Эти вещества называются оксидами.

1. Сборник задач и упражнений по химии: 8-й кл.: к учеб. П.А. Оржековского и др. «Химия. 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006. (с.70-74)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.68-70)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.:Астрель, 2012. (§21)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§28)

5. Химия: неорган. химия: учеб. для 8кл. общеобр. учрежд. /Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§20)

6. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта, 2003.

Кислоро́д - элемент главной подгруппы шестой группы, второго периода периодической системы химических элементов , с атомным номером 8. Обозначается символом O (лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.
Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).
2HgO (t) → 2Hg + O 2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.
Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.
Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.
Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.
Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим окислы, именуемые по современной международной номенклатуре оксидами.

Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.
В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.
Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:
2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2

Также используют реакцию каталитического разложения пероксида водорода Н 2 О 2:
2Н 2 О 2 → 2Н 2 О + О 2

Катализатором является диоксид марганца (MnO 2) или кусочек сырых овощей (в них содержатся ферменты, ускоряющие разложение пероксида водорода).
Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:
2KClO 3 → 2KCl + 3O 2

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей.

Физические свойства

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.
1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O 2 в 1 объёме Ag при 961 °C). Является парамагнетиком.
При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.
Жидкий кислород (темп. кипения −182,98 °C) - это бледно-голубая жидкость.
Твёрдый кислород (темп. плавления −218,79 °C) - синие кристаллы.

8 О 1s 2 2s 2 2p 4 ; А r = 15,999 Изотопы: 16 O (99,759 %); 17 О (0,037 %); 18 О (0,204 %); ЭО - 3,5


Кларк в земной коре 47% по массе; в гидросфере 85,82% по массе; в атмосфере 20,95% по объему.


Самый распространенный элемент.


Формы нахождения элемента: а) в свободном виде - О 2 , О 3 ;


б) в связанном виде: анионы О 2- (преимущественно)


Кислород - типичный неметалл, p-элемент. Валентность = II; степень окисления -2 (за исключением Н 2 О 2 , OF 2 , O 2 F 2)

Физические свойства O 2

Молекулярный кислород O 2 при обычных условиях находится в газообразном состоянии, не имеет цвета, запаха и вкуса, малорастворим в воде. При глубоком охлаждении под давлением конденсируется в бледно - голубую жидкость (Тkип - 183°С), которая при -219°С превращается в кристаллы сине - голубого цвета.

Способы получения

1. Кислород образуется в природе в поцессе фотосинтеза mCО 2 + nH 2 O → mO 2 + Сm(H 2 O)n


2. Промышленное получение


а) ректификация жидкого воздуха (отделение от N 2);


б) электролиз воды: 2H 2 O → 2Н 2 + О 2


3. В лаборатории получают термическим окислительно-восстановительным разложением солей:


а) 2КСlO 3 = 3О 2 + 2KCI


б) 2КМпO 4 = О 2 + МпО 2 + К 2 МпО 4


в) 2KNO 3 = О 2 + 2KNО 2


г) 2Cu(NO 3)O 2 = О 2 + 4NО 2 + 2CuO


д) 2AgNO 3 = О 2 + 2NО 2 +2Ag


4. В герметически замкнутых помещениях и в аппаратах для автономного дыхания кислород получают реакцией:


2Na 2 O 2 + 2СO 2 = О 2 + 2Na 2 CO 3

Химические свойства кислорода

Кислород - сильный окислитель. По химической активности уступает только фтору. Образует соединения со всеми элементами, кроме Не, Ne и Аг. Непосредственно реагирует с большинством простых веществ при обычных условиях или при нагревании, а также в присутствии катализаторов (исключение - Au, Pt, Hal 2 , благородные газы). Реакции с участием О 2 в большинстве случаев экзотермичны, часто протекают в режиме горения, иногда - взрыва. В результате реакций образуются соединения, в которых атомы кислорода, как правило, имеют С.О. -2:

Окисление щелочных металлов

4Li + О 2 = 2Li 2 O оксид лития


2Na + О 2 = Na 2 О 2 пероксид натрия


К + О 2 = КО 2 супероксид калия

Окисление всех металлов, кроме Au, Pt

Me + О 2 = Ме x O y оксиды

Окисление неметаллов, кроме галогенов и благородных газов

N 2 +О 2 = 2NO - Q


S + О 2 = SО 2 ;


C + О 2 = CО 2 ;


4Р + 5О 2 = 2Р 2 О 5


Si + О 2 = SiО 2

Окисление водородных соединений неметаллов и металлов

4HI + О 2 = 2I 2 + 2Н 2 O


2H 2 S + 3О 2 =2SО 2 + 2Н 2 O


4NH 3 + 3О 2 =2N 2 + 6Н 2 O


4NH 3 + 5О 2 = 4NO + 6Н 2 O


2PH 3 + 4О 2 = P 2 О 5 + 3Н 2 O


SiH 4 + 2О 2 = SiО 2 + 2Н 2 O


C x H y + О 2 = CО 2 + Н 2 O


MeH x + 3О 2 = Me x O y + Н 2 O

Окисление низших оксидов и гидроксидов поливалентных металлов и неметаллов

4FeO + О 2 = 2Fe 2 О 3


4Fe(OH) 2 +О 2 + 2H 2 O = 4Fe(OH) 3


2SО 2 + О 2 = 2SО 3


4NО 2 + О 2 + 2H 2 O = 4HNО 3

Окисление сульфидов металлов

4FeS 2 + 11О 2 = 8SО 2 + 2Fe 2 О 3

Окисление органических веществ

Все органические соединения горят, окисляясь кислородом воздуха.


Продуктами окисления различных элементов, входящих в их молекулы, являются:








Кроме реакций полного окисления (горения) возможны также реакции неполного окисления.


Примеры реакций неполного окисления органических веществ:


1) каталитическое окисление алканов

2) каталитическое окисление алкенов



3) окисление спиртов


2R-CH 2 OH + O 2 → 2RCOH + 2Н 2 O


4) окисление альдегидов

Озон

Озон О 3 - более сильный окислитель, чем O 2 , так как в процессе реакции его молекулы распадаются с образованием атомарного кислорода.


Чистый О 3 - газ синего цвета, очень ядовит.


К + О 3 = КО 3 озонид калия, красного цвета.


PbS + 2О 3 = PbSО 4 + О 2


2KI + О 3 + Н 2 O = I 2 + 2КОН + О 2


Последняя реакция используется для качественного и количественного определения озона.