Что происходит когда вода нагревается. Явления, происходящие в металле при нагреве - ручная ковка - металл - железо

При нагревании тело получает тепло, а при охлаждении отдает его.

Количество теплоты, полученное телом при нагревании, можно рассчитать по формуле:

где с - удельная теплоемкость вещества,
m - масса вещества,

Разность конечной и начальной температур.

Эта же формула годится для расчета количества теплоты, выделившейся при охлаждении тела.

Удельная теплоемкость вещества - это физическая величина, показывающая количество теплоты, которое нужно передать 1 кг этого вещества для нагревания его на 1 °С.
Единица измерения удельной теплоемкости в системе СИ:
[ с ] = 1 Дж/(кг°С).

При охлаждении тела до прежней температуры выделяется такое же количество теплоты, которое было затрачено на нагревание этого тела.

.......................

ИНТЕРЕСНО

1. Почему в водоемах летом вода на достаточной глубине плохо прогревается?

Нагревание воды солнечными лучами происходит сверху. Однако вода обладает плохой теплопроводностью.

2. Почему зимой на глубине у дна водоема сохраняется температура +4 градуса по Цельсию?

Первое – лёд не тонет.
Второе – вода, охладившаяся до +4 градусов по Цельсию, обладает наибольшей плотностью, поэтому опускается на дно.
Третье - плохая теплопроводность воды не может привести к выравниванию температуры по всей глубине.

Нагревание пузырька плотничьего уровня

С помощью этого прибора плотники выставляют горизонтальный уровень при строительных работах.
Если прибор лежит на горизонтальной поверхности, то пузырек воздуха, имеющийся в стеклянной трубке, заполненной водой, будет располагаться ровно по центру. При наклоне уровня пузырек сместится к одному из концов трубки.
Длина пузырька воздуха меняется при колебаниях температуры. Но, как? Когда пузырек больше: в теплую или в холодную погоду? В этих условиях газ не может расширяться, т.к. этому препятствует замкнутая в уровне жидкость. При нагревании расширение жидкости окажется больше расширения трубки, что и сжимает пузырек.
Итак, пузырек уровня в теплую погоду меньше, чем в холодную.
А, ты, согласен с этим?

Очень часто лед используется для охлаждения. Это возможно, потому что при таянии (плавлении) льда поглощается большое количество тепла.


Многие металлы и сплавы, нагретые до высокой температуры, становятся пластичными. Железо, сталь, медь, алюминий, магний, латунь, алюминиево-железистая бронза, дюралюмин и некоторые другие металлы и сплавы при нагревании приобретают способность коваться и изменять свою форму без разрушения. Другие металлы и сплавы, например, серый чугун, оловянистая бронза, цинковые сплавы в нагретом состоянии не приобретают способности деформироваться, при ударах и сдавливании становятся хрупкими и разрушаются. Для железа и стали обычно чем выше температура нагрева, тем выше пластичность. Так, например, для стали, нагретой до. 950°, усилие при ковке потребуется в 2,2 раза больше, чем для стали, нагретой до 1200°, а для стали, нагретой до 700°, усилие потребуется в 4,5 раза больше.
Между прочим, улучшение пластичности относится к температурам нагрева выше 600°, т. е. когда в стали начнут происходить внутренние превращения, о чем подробно будет сказано позднее. При нагреве же от комнатной температуры, т. е. от 15° до 600° прочность стали изменяется не одинаково, а именно: до температуры 300° предел прочности углеродистой стали на растяжение увеличивается и только при нагреве выше 300° он начинает уменьшаться. Ho, получая при температуре около 300° повышенный предел прочности, сталь при этих температурах становится хрупкой и приобретает, как говорят, синеломкость.
При температуре, близкой к 600°, предел прочности стали уменьшается очень резко. Так, если взять обычную углеродистую сталь марки 45, то предел ее прочности падает с 60 кг/мм2 при 15° до 25 кг/мм2 при 600°, т. е. больше чем в два раза. При температурах выше 600° уменьшение предела прочности идет медленнее, но все же очень значительно. Так, при температуре 700° сталь марки 45 имеет предел прочности 15 кг/мм2; при 1000°-5,5 кг/мм2; при 1200° - 2,5 кг/мм2; при 1300° - 2,0 кг/мм2. Таким образом, прочность стали, нагретой до температуры 1200-1300°, по сравнению с холодной сталью уменьшается примерно в 25-30 раз.
При нагреве цветных металлов и сплавов наблюдается сходная картина. Разница лишь только в том, что поскольку они имеют температуру плавления более низкую, чем сталь, то все критические температуры их смещаются вниз. Например, при нагреве до 800° прочность меди уменьшается в 6-7 раз, прочность алюминия при нагреве до 600° уменьшается в 30-35 раз.
Таким образом, нагретые металлы становятся в 25-35 раз менее прочными. Следовательно, в нагретом состоянии они требуют примерно во столько же раз меньше усилий и расхода энергии для их деформации.
Если сталь нагревать еще дальше, т. е. до еще более высокой температуры - выше 1300°, то зерна становятся очень крупными и может начаться их быстрое оплавление. Этому часто препятствует сама печь, которая не может дать температуры, необходимой для расплавления стали - более 1400° Когда зерна или кристаллы начинают оплавляться, то в межкристаллическое пространство будет проникать кислород воздуха, образуя там на гранях зерен хрупкую пленку окислов железа. Металл начинает разрушаться вначале на поверхности, а затем разрушения проникают в глубину заготовки. Это и есть пережог стали. Чтобы не допустить пережога, который является неисправимым браком, нужно знать точно, какую наивысшую температуру может дать печь, и следить за тем, чтобы при этой температуре заготовки нагревались в течение только положенного короткого времени.
С изменением структуры изменяются и механические свойства металла. Чем крупнее зерна, тем сталь имеет меньшую прочность и не только за счет собственного металла, а также и за счет меж-кристаллического пространства, в котором расположены различные, менее прочные неметаллические материалы, например, сера и фосфор, которые плавятся при низких температурах. Нагретый металл, с увеличенными кристаллами, легче растянуть, а следовательно, потребуется меньшее усилие и для сжатия.

Чем выше становится температура, тем активнее двигаются молекулы вещества (чем бы оно ни являлось - газом, жидкостью или твердым телом). Все молекулы находятся в постоянном движении, если только температура не опускается до минус 273°С. Эта температура, которая называется абсолютным нулем, достигается, когда всякое движение молекул полностью прекращается.
Если зимним вечером в трескучий мороз вынести на улицу чашку с кипящей водой, чашку с раскаленным до такой же температуры песком и большую бочку с теплой водой, через некоторое можно будет увидеть, что первым до 0°С остынет песок, потом замерзнет вода в чашке, а на бочке лед появится в последнюю очередь. На скорость остывания, кроме температуры, влияет и размер предмета.

Если нагревать емкость со льдом, температура не будет подниматься выше нуля, пока весь лед не растает. Лед тает при температуре 0°С, при этой же температуре вода начинает замерзать.
Иногда, выйдя из дому, думаешь, что на улице тепло, но, пройдя некоторое время, понимаешь, что на самом деле довольно холодно. Если жарким летним днем спуститься в подвал, то покажется, что там очень холодно, хотя температура там плюс 2СГС. Человеческие ощущения не самый лучший метод для измерения температуры.
Возьмем на кухне три кружки и нальем в одну горячую, но не обжигающую воду, в другую - теплую, а в третью - холодную. Теперь палец левой руки опустим в горячую воду, а правой - в холодную. Стоит подождать, пока пальцы привыкнут к температуре воды, в которую они опущены. Теперь одновременно вынем пальцы из чашек и засунем их в чашку с теплой водой. Оказывается пальцу, который был в горячей воде, стало холодно, а палец из холодной воды, наоборот, в теплой воде согрелся.
Температура теплой воды может быть точно измерена при помощи термометра, а наши ощущения сильно зависят от условий, в которых мы находились до опыта.
Большая часть термометров работают на основе простого свойства вещества расширяться при нагревании и сжиматься при охлажде-

Опыт с водой разной температуры

нии. В самом первом термометре в качестве расширяющегося и сжимающегося вещества был взят обычный воздух. Изобрел этот термометр Галилей. Этот прибор представлял собой перевернутую колбу с воздухом, опущенную горлышком в сосуд с водой. Прибор был не точен, так как показания термометра зависели от изменчивой погоды, а именно, атмосферного давления. Но и это был важный шаг вперед. Термометр Галилея позволил измерить температуру у больного лихорадкой. Так, впервые, был «поставлен градусник».
В следующих моделях термометров вместо воздуха стали использовать подкрашенную жидкость. Но и эти приборы работали плохо, потому что жидкость испарялась. По настоящему термометры вошли в жизнь человека, когда кто-то из учеников Галилея догадался запаять трубку с жидкостью.


Термометр Галилея. Рисунок из рукописи

Существуют разные термометры для разных целей. Большая часть термометров, которые можно встретить в доме человека, содержат спирт или ртуть. Спирт замерзает при минус 112°С, а кипит - при плюс 72°С. Это делает спирт удобным для уличных термомет
ров. Ртуть замерзает при минус 39°С, поэтому ртутные термометры нельзя использовать в районах с очень низкими температурами, но зато кипит при 357°, поэтому очень удобна для измерения высоких температур. Так устроены химические и технические термометры для измерения высоких температур.
В медицинских термометрах тоже используется ртуть, что делает их более точными. Для того чтобы ртуть в термометре не опускалась, пока врач подносит термометр к глазам, отверстие в нижней части термометра, около шарика, очень маленькое. Поэтому, чтобы заставить ртуть пройти сквозь него перед тем, как мерить температуру тела, нужно термометр встряхнуть.
Одни из самых точных термометров - газовые. Они позволяют измерять температуру от абсолютного нуля до полутора тысяч градусов.

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры .

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры .

Количество теплоты

Это энергия , которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле


Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость - известная, уже вычисленная для всех веществ величина, в физических таблицах.

Теплоемкость вещества С - это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление - переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование - это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина,