Основы обогащения полезных ископаемых. Краткие сведения о полезных ископаемых

7. Что подразумевается под терминами химическое и радиометрическое обогащение?

8. Что называется обогащением по трению, декрипитацией?

9. Какие формулы технологических показателей обогащения?

10. Какова формула степени сокращения?

11. Как вычислить степень обогащения руды?

Темы семинаров:

Основная характеристика методов обогащения.

Основные отличия от подготовительных, вспомогательных и основных методов обогащения.

Краткая характеристика основных методов обогащения.

Краткая характеристика подготовительных и вспомогательных методов обогащения.

Степень сокращения проб, основная роль данного метода при обогащении полезных ископаемых.

Домашнее задание :

Изучить термины, правила и основные методы обогащения, закрепить, полученные знания на семинарском занятии самостоятельно.

ЛЕКЦИЯ №3.

ТИПЫ И СХЕМЫ ОБОГАЩЕНИЯ И ИХ ПРИМЕНЕНИЕ.

Цель: Объяснить студентам основные типы и схемы обогащения и применение таких схем на производстве. Дать понятие о методах и процессах обогащения полезных ископаемых.

План:

Методы и процессы обогащения полезных ископаемых, область их применения.

Обогатительные фабрики и их промышленное значение. Основные типы технологических схем.

Ключевые слова: основные процессы, вспомогательные процессы, подготовительные методы, применение процессов, схема, технологическая схема, количественная, качественная, качественно-количественная, водно-шламовая, схема цепи аппаратов.

1. На обогатительных фабриках полезные ископаемые подвергаются последовательным процессам переработки, которые по назначению в технологическом цикле фабрики разделяются на подготовительные, собственно обогатительные и вспомогательные.

К подготовительным операциям обычно относят дробление, измельчение, грохочение и классификацию, т.е. процессы, в результате которых достигается раскрытие минерального состава, пригодной для их последующего разделения в процессе обогащения, а так же операции усреднения полезных ископаемых, которые могут проводиться на рудниках, карьерах, в шахтах и на обогатительных фабриках. При дроблении и измельчении достигается уменьшение крупности кусков руды и раскрытие минералов в результате разрушения сростков полезных минералов с пустой породой (или сростков одних ценных минералов с другими). Грохочение и классификация применяются для разделения по круп­ности полученных при дроблении и измельчении механических сме­сей. Задача подготовительных процессов - доведение минерального сырья до крупности, необходимой для последующего обогащения.



К основным обогатительным операциям относят те физические и физико-химические процессы разделения минералов, при которых полезные минералы выделяются в концентраты, а пустая порода – в хвосты.К основнымобогатительным процессам, относятся процессы разделения минералов по физическим и физико-химическим свойствам (по фор­ме, плотности, магнитной восприимчивости, электропроводности, смачиваемости, радиоактивности и др.): сортировка, гравитация, магнитное и электрическое обогащение, флотация, радиометриче­ское обогащение и др. В результате проведения основных процессов получают концентраты и хвосты. Применение того или другого спо­соба обогащения зависит от минералогического состава руды.

К вспомогательным процессам относят процедуры удаления влаги из продуктов обогащения. Такие процессы называются обезвоживанием, которое проводится с целью доведения влажности продуктов до установленных норм.

На обогатительной фабрике исходное сырье при обработке подвергается ряду последовательных технологических операций. Графическое изображение совокупности и последовательности этих операций так же называют технологической схемой обогащения.

При обогащении полезных ископаемых используют различия их физических и физико-химических свойств, существенное значение из которых имеют цвет, блеск, твердость, плотность, спайность, излом и т.д.

Цвет минералов разнообразен. Различие в цвете используется при ручной рудоразборке или пробовыборке из углей и других видах обработки.

Блеск минералов определяется характером их поверхностей. Различие в блеске можно использовать, как и в предыдущем случае, при ручной рудоразборке из углей или пробовыборке из углей и других видах обработки.

Твердость минералов, входящих в состав полезных ископаемых, имеет важное значение при выборе способов дробления и обогащения некоторых руд, а так же углей.

Плотность минералов изменяется в широких пределах. Различие в плотности полезных минералов и пустой породы широко используется при обогащении полезных ископаемых.

Спайность минералов заключается в их способности раскалываться от ударов по строго определенному направлению и образовывать по плоскостям раскола гладкие поверхности.

Излом имеет существенное практическое значение в процессах обогащения, так как характер поверхности минерала, полученного при дроблении и измельчении, оказывает влияние при обогащении электрическими и другими методами.

2. Технология обогащения полезных ископаемых состоит из ряда последовательных операций, осуществляемых на обогатительных фабриках.

Обогатительными фабриками называют промышленные предприятия, на которых методами обогащения обрабатывают полезные ископаемые и выделяют из них один или несколько товарных продуктов с повышенным содержанием ценных компонентов и пониженным содержанием вредных примесей. Современная обогатительная фабрика – это высокомеханизированное предприятие со сложной технологической схемой переработки полезного ископаемого.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически

Технологическая схема включает сведения о последовательности технологических операций по переработки полезных ископаемых на обогатительной фабрике.

Качественная схема содержит сведения о качественных измерениях полезного ископаемого, в процессе его переработки, а так же данные о режиме отдельных технологических операций. Качественная схема (рис. 1.) дает представление о приня­той технологии переработки руды, последовательности процессов и операций, которым подвергается руда при обогащении.

рис. 1. Качественная схема обогащения

Количественная схема включает количественные данные о распределении полезного ископаемого по отдельным технологическим операциям и выход получаемых продуктов.

Качественно–количественная схема совмещает в себе данные качественной и количественной схем обогащения.

Если в схеме имеются данные о количестве воды в от­дельных операциях и продук­тах обогащения, о количестве добавляемой воды в процесс, то схема называется шламовой. Распределение твердого и воды по операциям и продуктам ука­зывается в виде отношения твердого к жидкому Т: Ж, например, Т: Ж = 1: 3, или в процентах твердого, например 70% твердого. Соотношение Т:Ж численно равно коли­честву воды (м³), приходящейся на 1 т твердого. Количество воды, добавляемой в отдельные операции, выражается в куби­ческих метрах в сутки или в ку­бических метрах в час. Часто эти виды схем совмещаются и тогда схема называется качественно-количественной шламовой.

Вводно-шламовая схема содержит данные о соотношении воды и твердого в продуктах обогащения.

Схема цепи аппаратов – графическое изображение пути движения полезного ископаемого и продуктов обогащения через аппараты. На таких схемах аппараты, машины и транспортные средства изображаются условно и указывается их число, тип и размер. Движение продуктов от агрегата к агрегату обозначается стрелками (см. рис.2):

Рис. 2. Схема цепи аппаратов:

1,9- бункер; 2, 5, 8, 10, 11 - транспортер; 3, 6 - грохоты;

4 - щековая дробилка; 7 - конусная дробилка; 12 - классификатор;

13 - мельница; 14 - флотомашина; 15 - сгуститель; 16 - фильтр

По схеме на рисунке видно подробно, как руда проходит полное обогащение, включая подготовительные и основные процессы обогащения.

В качестве самостоятельных процессов чаще всего применяют флотацию, гравитационные и магнитные методы обогащения. Из двух возможных методов, дающих одинаковые показатели обогащения, обычно выбирают наиболее экономичный и экологически безопасный метод.

Выводы:

Процессы обогащения подразделяются на подготовительные, основные вспомогательные.

При обогащении полезных ископаемых используют различия их физических и физико-химических свойств, существенное значение из которых имеют цвет, блеск, твердость, плотность, спайность, излом и т.д.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически. В зависи­мости от назначения схемы могут быть качественными, количе­ственными, шламовыми. Кроме указанных схем обычно соста­вляют схемы цепи аппаратов.

В качественной схеме обогащения изображается путь движе­ния руды и продуктов обогащения последовательно по операциям с указанием некоторых данных о качественных изменениях руды и продуктов обогащения, например, крупности. Качественная схема дает представление о стадиальности процесса, коли­честве перечистных операций концентратов и контрольных пере­чисток хвостов, о виде процесса, способе обработки промпродуктов и количестве конечных продуктов обогащения.

Если на качественной схеме указать количество перерабаты­ваемой руды, получаемых в отдельных операциях продуктов и со­держание в них ценных компонентов, то схема уже будет назы­ваться количественной или качественно-количественной.

Совокупность схем дает нам полное понятие о происходящем процессе обогащения и переработки полезных ископаемых.

Контрольные вопросы:

1. Что относится к подготовительным, основным и вспомогательным процессам обогащения?

2. Какие различия в свойствах минералов используются при обогащении полезных ископаемых?

3. Что называют обогатительными фабриками? Каково их применение?

4. Какие типы технологических схем Вы знаете?

5. Что такое схема цепи аппаратов.

6. Что означает качественная схема технологического процесса?

7. Как Вы можете охарактеризовать качественно-количественную схему обогащения?

8. Что означает водно-шламовая схема?

9. Какие характеристики можно получить, следуя технологическим схемам?

Вещественный состав полезных ископаемых.

Вещественный состав полезных ископаемых – это совокупность данных о содержании полезных компонентов и примесей минеральных формах проявления и характера срастания зерен важнейших элементов, их кристаллохимических и физических свойствах.

Химический состав

Химический состав полезных ископаемых характеризует содержание основных и сопутствующих полезных ископаемых, а так же полезных и вредных примесей.

Полезный компонент – содержится в п.и. в промышленных концентрациях определяя их основную ценность, назначение и название. Например железо в железных рудах.

Сопутствующие полезные компоненты –составные части п.и. извлечение которых экономически целесообразны лишь совместно с основными п.к. например золото и серебро в полуметаллических сульфидных рудах.

Полезными примесями называют ценные элементы, содержащиеся в п.и., которые могут быть выделены и использованы совместно с основным п.к, улучшая его качества. Например. Хром и вольфрам в железных рудах итд.

Вредными примесями называются элементы, присутствующие в п.и. совместно с основным полезным компонентом и ухудшающие его качества. Например сера и фосфор в железных рудах, сера в углях.

Химический состав п.и. определяется спектральным, химическо-пробирным, ядерно-физическим, активационным и другими видами анализа.

Минералогический состав.

Минералогический состав характеризует минеральные формы проявления элементов, входящих в состав полезных ископаемых

В соответствии с минеральными формами проявления основных ценных компонентов руды цветных металлов руды цветных металлов различают как сульфидные, окисленных, смешанные.

Руды железа: магнетитовые, титаномагнетитовые, гематитомартитовые, бурожелезняковые, сидеритовые.

Руды марганца: браунитовые, псиломелановадовые, пиролюзитовые, смешанные комплексные.

Горно – химическое сырье: апатитовые, апатит – нефелиновые, фосфоритовые, сильвинитовые руды.

1.1.3. Текстурно – структурные характеристики.

Текстурные и структурные особенности в строении полезного ископаемого характеризуются крупностью, формой, пространственным распределением минеральных включений и агрегатов.

Основными формами минеральных зерен являются идиоморфная (ограниченная гранями кристалла), аллотриоморфная (ограниченная формой заполняемого пространства), коллоидная, эмульсионная, пластинчатая -- реликтово-остаточная, осколки и обломки.



В зависимости от преобладающего размера минеральных выделений различают крупную (20-2 мм), мелкую (2-0,2 мм), тонкую (0,2-0,02 мм), весьма тонкую или эмульсионную (0,02-0,002 мм), субмикроскопическую (0,002-0,0002 мм) и коллоидно-дисперсную (менее 0,0002 мм) вкрапленность минералов.

Текстура руды характеризует взаимное расположение минеральных агрегатов и может быть самой разнообразной. Например, в полосчатых и слоистых структурах агрегаты примыкают друг к другу; в конкреционных - располагаются один внутри другого; в петельчатых - взаимно проникают друг в друга; в кокардовых - последовательно окаймляют одними минераль-ными агрегатами другие.

Характеристика минеральных выделений является основой для разработки технологии и прогноза показателей переработки полезных ископаемых.

Чем крупнее вкрапленность минералов и совершеннее форма их выделений, тем проще технология и выше показатели обогащения полезного ископаемого.

Физические свойства

Каждый минерал руды обладает определенным химическим составом и имеет характерное для него строение. Это обусловливает довольно постоянные и индивидуальные физические свойства минералов: цвет; плотность; электропроводность; магнитную восприимчивость и др.



Создавая определенным образом условия, при которых наиболее контрастно проявляются те или иные свойства минералов, можно их отделить друг от друга, в том числе выделить из общей массы ценные минералы. .",. ,

В качестве признаков разделения минеральных компонентов при обогащении полезных ископаемых используют их физические и химические свойства, важнейшими из которых являются: механическая прочность; плотность; магнитная проницаемость; электропроводность и диэлектрическая проницаемость; различные виды излучений; смачиваемость; растворимость и др.

Механическая прочность (крепость) руд и углей характеризуется дробимостью, хрупкостью, твердостью, абразивностью, временным сопротивлением сжатию и определяет энергетические затраты при их дроблении и измельчении, а также выбор дробильно-измельчительного и обогатительного оборудования.

Ядерно-физические свойства минералов проявляются при взаимодействии их с электромагнитным излучением (люминесценция, фотоэффект, эффект Комптона, флюоресценция и др.).

Разделение минералов основано на различии в интенсивности испускания или ослабления ими излучений.

Магнитные свойства минералов возникают и проявляются в магнитном поле. Мерой оценки магнитных свойств минералов служит их магнитная проницаемость и связанная с ней магнитная восприимчивость, равная 1/|1м. Магнитные свойства определяются в основном химическим составом и отчасти структурой минералов. Повышенная магнитная восприимчивость свойственна минералам, в состав которых входят железо, никель, марганец, хром, ванадий, титан.

Угольное вещество является диамагнитным, а минеральные примеси в нем парамагнитные.

Различия в магнитных свойствах минералов используют для их разделения с помощью методов магнитного обогащения.

Электрические свойства минералов определяются электропроводностью и диэлектрической проницаемостью.

Различия в электрических свойствах минералов используют для их разделения с помощью методов электрического обогащения.

Смачивание - проявление межмолекулярного взаимодействия на границе соприкосновения грех фаз - твердого тела, жидкости и газа, выражающееся в растекании жидкости по по-верхности твердого тела.

Различия в смачиваемости поверхности тонкоизмельченных минеральных частиц используют для их разделения методами флотационного обогащения.

Растворимость минералов - способность минералов растворяться в неорганических и органических растворителях. Перевод твердой фазы в жидкое состояние может осуществляться растворением в результате диффузии и межмолекулярного взаимодействия или за счет химических реакций.

Реальная растворимость твердых тел определяется эмпирически. Различия в растворимости минеральных компонентов используют в химических методах обогащения руд.

Характеристика вещественных составов приведена на рисунке 1.

Рис 1. Характеристика вещественного состава.

Классификация методов и процессов обогащения.

На обогатительных фабриках п.и. подвергаются ряду последовательных процессов обработки, которые по своему назначению делятся на:

Подготовительные

Основные обогатительные

Вспомогательные и процессы производственного обслуживания

Подготовительные процессы. К подготовительным относятся процессы дробления и измельчения, при которых достигается раскрытие минералов в результате разрушения сростков полезных минералов с пустой породой (или сростков одних полезных минералов с другими) с образованием механической смеси частиц и кусков разного минерального состава, а также процессы грохочения и классификации, применяемые для разделения по крупности полученных при дроблении и измельчении механических смесей. Задача подготовительных процессов - доведение минерального сырья до крупности, необходимой для последующего обогащения, а в некоторых случаях- получение конечного продуют заданного гранулометрического состава для непосредственного использования в народном хозяйстве, (сортировка руд и углей).

При виде товарных ценных минералов справедливо возникает вопрос о том, каким образом из первичной руды или ископаемого может получиться столь привлекательное ювелирное изделие. Особенно с учетом того, что переработка породы как таковая представляет собой если не один из финальных, то как минимум предшествующий заключительному этапу процесс облагораживания. Ответом же на вопрос будет обогащение в ходе которого происходит базовая обработка породы, предусматривающая отделение ценного минерала от пустых сред.

Общая технология обогащения

Переработка ценных ископаемых осуществляется на специальных предприятиях по обогащению. Процесс предусматривает выполнение нескольких операций, среди которых подготовка, непосредственное расщепление и разделение породы с примесями. В ходе обогащения получают разные минералы, в том числе графит, асбест, вольфрам, рудные материалы и т. д. Не обязательно это должны быть ценные породы - есть немало фабрик, выполняющих переработку сырья, которое в дальнейшем используется в строительстве. Так или иначе, основы обогащения полезных ископаемых базируются на анализе свойств минералов, которые обуславливают и принципы разделения. К слову, необходимость отсечения разных структур возникает не только с целью получения одного чистого минерала. Распространена практика, когда из одной структуры выводится несколько ценных пород.

Дробление породы

На этом этапе производится измельчение материала на отдельные частицы. В процессе дробления задействуются механические силы, с помощью которых преодолеваются внутренние механизмы сцепления.

В результате порода делится на мелкие твердые частицы, носящие однородный характер структуры. При этом стоит различать непосредственное дробление и технику измельчения. В первом случае минеральное сырье подвергается менее глубокому разделению структуры, в ходе которого формируются частицы фракцией более 5 мм. В свою очередь измельчение обеспечивает образование элементов диаметром менее 5 мм, хотя и этот показатель зависит от того, с какой породой приходится иметь дело. В обоих случаях ставится задача максимального расщепления зерен полезного вещества так, чтобы освобождался чистый компонент без микста, то есть пустой породы, примесей и т. д.

Процесс грохочения

После завершения процесса дробления заготовленное сырье подвергается другому технологическому воздействию, которое может представлять собой и просеивание, и выветривание. Грохочение в сущности является способом классификации полученных зерен по характеристике крупности. Традиционный способ реализации данного этапа предусматривает использование решета и сита, обеспеченных возможностью калибрования ячеек. В процессе грохочения отделяются надрешетчатые и подрешетчатые частицы. В некотором роде обогащение полезных ископаемых начинается уже на этой стадии, поскольку часть примесей и миксты отделяются. Мелкая фракция размером менее 1 мм отсеивается и с помощью воздушной среды - выветриванием. Масса, напоминающая мелкофракционный песок, поднимается искусственными воздушными потоками, после чего оседает.

В дальнейшем частицы, которые оседают медленнее, отделяются от совсем маленьких пылевых элементов, задерживающихся в воздухе. Для дальнейшего сбора производных такого грохочения используют воду.

Обогатительные процессы

Процесс обогащения ставит целью выделение из исходного сырья частиц полезного ископаемого. В ходе выполнения таких процедур выделяется несколько групп элементов - полезный концентрат, отвальные хвосты и другие продукты. Принцип разделения этих частиц основывается на различиях между свойствами полезных минералов и пустой породы. Такими свойствами могут выступать следующие: плотность, смачиваемость, магнитная восприимчивость, типоразмер, электропроводность, форма и т. д. Так, процессы обогащения, использующие разницу в плотности, задействуют гравитационные методы разделения. Такой подход используется при рудного и нерудного сырья. Весьма распространено и обогащение на основе характеристик смачиваемости компонентов. В данном случае применяется флотационный метод, особенностью которого является возможность разделения тонких зерен.

Также используется магнитное обогащение полезных ископаемых, которое позволяет выделять железистые примеси из тальковых и графитовых сред, а также очищать вольфрамовые, титановые, железные и другие руды. Базируется эта техника на разнице в воздействии магнитного поля на частицы ископаемых. В качестве оборудования задействуются специальные сепараторы, которые также используют для восстановления магнетитовых суспензий.

Заключительные этапы обогащения

К основным процессам этого этапа стоит отнести обезвоживание, сгущение пульпы и сушку полученных частиц. Подбор оборудования для обезвоживания осуществляется на основе химико-физических характеристик минерала. Как правило, данная процедура выполняется в несколько сеансов. При этом необходимость в ее выполнении возникает не всегда. Например, если в процессе обогащения использовалась электрическая сепарация, то обезвоживание не требуется. Помимо подготовки продукта обогащения к дальнейшим процессам переработки, должна быть предусмотрена и соответствующая инфраструктура для обращения с частицами минерала. В частности, на фабрике организуется соответствующее производственное обслуживание. Вводятся внутрицеховые транспортные средства, организуется снабжение водой, теплом и электроэнергией.

Оборудование для обогащения

На этапах измельчения и дробления задействуются специальные установки. Это механические агрегаты, которые с помощью различных приводных сил оказывают разрушающее воздействие на породу. Далее в процессе грохочения используют решето и сито, в которых предусматривается возможность калибрования отверстий. Также для просеивания применяют более сложные машины, которые называются грохотами. Непосредственно обогащение выполняют электрические, гравитационные и магнитные сепараторы, которые используются в соответствии с конкретным принципом разделения структуры. После этого для обезвоживания используют технологии дренирования, в реализации которых могут применяться те же грохоты, элеваторы, центрифуги и аппараты для фильтрации. Заключительный этап, как правило, предполагает использование средств термической обработки и сушки.

Отходы процесса обогащения

В результате процесса обогащения образуется несколько категорий продуктов, которые можно разделить на два вида - полезный концентрат и отходы. Причем ценное вещество вовсе не обязательно должно представлять одну и ту же породу. Также нельзя сказать, что отходы представляют собой ненужный материал. В таких продуктах может содержаться ценный концентрат, но в минимальных объемах. При этом дальнейшее обогащение полезных ископаемых, которые находятся в структуре отходов, зачастую не оправдывает себя технологически и финансово, поэтому вторичные процессы такой переработки редко выполняются.

Оптимальное обогащение

В зависимости от условий проведения обогащения, характеристик исходного материала и самого метода может различаться качество конечного продукта. Чем выше содержание в нем ценного компонента и меньше примесей, тем лучше. Идеальное обогащение руды, к примеру, предусматривает полное отсутствие отходов в продукте. Это значит, что в процессе обогащения смеси, полученной дроблением и грохочением, из общей массы полностью были исключены частицы сора от пустых пород. Однако достичь такого эффекта удается далеко не всегда.

Частичное обогащение полезных ископаемых

Под частичным обогащением понимается разделение класса крупности ископаемого или же отсечение легко выделяемой части примесей из продукта. То есть данная процедура не ставит целью полное очищение продукта от примесей и отходов, а лишь повышает ценность исходного материала путем увеличения концентрации полезных частиц. Такая обработка минерального сырья может использоваться, к примеру, в целях понижения зольности угля. В процессе обогащения выделяется крупный класс элементов при дальнейшем смешивании концентрата необогащенного отсева с мелкой фракцией.

Проблема потерь ценной породы при обогащении

Как ненужные примеси остаются в массе полезного концентрата, так и ценная порода может выводиться вместе с отходами. Для учета таких потерь используются специальные средства, позволяющие рассчитать допустимый уровень оных для каждого из технологических процессов. То есть для всех методов отделения разрабатываются индивидуальные нормы допустимых потерь. Допустимый процент учитывается в балансе обрабатываемых продуктов с целью покрытия расхождений в расчете коэффициента влаги и механических потерь. Особенно такой учет важен, если планируется обогащение руды, в процессе которого используется глубокое дробление. Соответственно, повышается и риск потерь ценного концентрата. И все же в большинстве случаев утрата полезной породы происходит из-за нарушений в технологическом процессе.

Заключение

За последнее время технологии обогащения ценных пород сделали заметный шаг в своем развитии. Совершенствуются и отдельные процессы переработки, и общие схемы реализации отделения. Одним из перспективных направлений дальнейшего продвижения является использование комбинированных схем обработки, которые повышают качественные характеристики концентратов. В частности, комбинированию подвергаются магнитные сепараторы, в результате чего оптимизируется процесс обогащения. К новым методикам этого типа можно отнести магнитогидродинамическую и магнитогидростатическую сепарацию. При этом отмечается и общая тенденция ухудшения рудных пород, что не может не сказываться на качестве получаемого продукта. Бороться с повышением уровня примесей можно активным применением частичного обогащения, но в общем итоге увеличение сеансов переработки делает технологию неэффективной.

Обогащение полезных ископаемых – это совокупность технологических процессов предварительной обработки минерального сырья с целью придания ему качеств, удовлетворяющих требованиям потребителей.

При обогащении:

Повышается содержание полезного компонента в сырье,

Удаляются из сырья вредные примеси,

Достигается однородность сырья по крупности и составу.

В результате обогащения получают:

Концентрат – продукт обогащения, имеющий более высокое по сравнению с рудой содержание полезного компонента. По его содержанию, по содержанию примесей, влаги, концентраты должны удовлетворять требованиям ГОСТов, ОСТов, ТУ;

Отвальные хвосты – отходы обогащения, состоящие их пустой породы с незначительным содержанием полезных компонентов, извлечение которых технологически невозможно или экономически невыгодно.

Обогащение уменьшает расходы на транспортировку сырья, а также на его переработку, т.к. удаляется большой объем пустой породы.

В результате обогащения значительно повышается содержание полезных компонентов (%):

10 3 10 2 10 -1
d, мм

На рисунке показана зависимость удельного расхода энергии при дроблении и измельчении материала средней прочности от различной конечной крупности.

Степень дробления (измельчения) – это отношение диаметра наибольших кусков руды (D) к диаметру кусков продукта измельчения (d):


В зависимости от свойств руды применяется:

1 – раздавливание – разрушение в результате сжатия кусков между двумя давящими телами;

2 – раскалывание – разрушение в результате расклинивания между остриями дробящих тел;

3 – удар – разрушение под действием кратковременных динамических нагрузок;

4 – истирание – разрушение в результате воздействия смещающихся относительно друг друга поверхностей.

В зависимости от способа и механизма разрушения кусков руды различают:

Щековые дробилки (раздавливают и раскалывают куски между периодически сближающимися плитами – щеками) – аппараты периодического действия: дробление руды чередуется с разгрузочно-загрузочным циклом, что является основным недостатком этого типа дробилок, снижающим их производительность;

Конусные дробилки (раздавливают и истирают куски между движущимся и неподвижным конусами) – дробилки непрерывного действия;

Валковые дробилки (раздавливают и раскалывают куски между двумя гладкими иди зубчатыми валами, движущимися навстречу друг другу) – дробилки непрерывного действия;

Дробилки ударного действия используются для дробления мягких и вязких материалов.

Измельчение материала проводится в мельницах различного типа:

Барабанные мельницы используют для измельчения материала до крупности частиц 1-2 мм. Это стальной барабан, в который вместе с рудой загружают мелющие тела. В зависимости от вида дробящих тел различают мельницы шаровые, стержневые, галечные и самоизмельчения.

После каждой стадии дробления (измельчения) от полученного продукта с помощью грохочения (просеивания) отделяется мелкая фракция. Грохочение обычно применяют для разделения материалов с крупностью частиц выше 1-2 мм.

Методы гидравлической классификации используют для разделения материалов с размером частиц менее 100 мкм. Гидравлическая классификация – процесс разделения смеси минеральных зерен по крупности на основе различия в скоростях их осаждения в воде.

Затем идет собственно обогащение. Наиболее распространенные методы обогащения:

Флотационный,

Гравитационный,

Магнитный,

Электрический.

С помощью флотации обогащается более 90% всех руд черных и цветных металлов, а также неметаллические полезные ископаемые: сера, графит, фосфатные руды, уголь.

Флотационная система гетерогенна, включает в себя три фазы: твердую, жидкость, газ. Флотация основана на способности твердых частиц удерживаться на границе раздела жидкой и газовой фаз, т.е. на гидрофобности, несмачиваемости частиц. Наиболее распространена пенная флотация. Несмачиваемые водой минеральные зерна прилипают к пузырькам воздуха и всплывают на поверхность. Изменяя условия флотации можно добиться, например, следующего: при флотации железных руд в пенный продукт будет выделяться магнетит (железорудный концентрат) – прямая флотация, а может выделяться кварц (пустая порода) – обратная флотация, т.е. флотационные процессы универсальны из-за разнообразных способов ведения и широких возможностей регулирования.

Для ведения процесса флотации необходимо использование различных химических соединений:

Собиратели – резко повышают гидрофобность поверхности извлекаемых частиц. При флотации сульфидных материалов применяют

Ксантогенаты R-O-C-S-Me и дитиофосфаты RO S

(R – спиртовый или фенольный радикал; Me – Na или K);

Несульфидные минералы флотируют с Na-мылами жирных кислот (олеат Na – С17Н33СООNa) или аминами (RNH2);

Уголь, сера и другие природногидрофобные минералы флотируются при помощи керосина и других неполярных реагентов.

Вспениватели – вещества, которые облегчают диспергирование воздуха, препятствуют слиянию пузырьков и повышают прочность пены (различные ПАВы, сосновое масло);

Регуляторы среды – создают оптимальную рН среды (известь, сода, серная кислота).

Процесс флотации проводят во флотационных машинах. Пенный продукт подают на обезвоживание.

Гравитационные процессы основаны на различии характера и скорости движения минеральных частиц с разными плотностями в водной или воздушной среде:

Промывка – разделение путем разрыхления и удаления с помощью воды глинистых материалов, которыми скреплены зерна полезного ископаемого (железные и марганцевые руды, фосфориты, россыпи цветных, редких и благородных металлов, промывка золотого песка, высококачественного строительного материала);

Обогащение в тяжелых средах – разделение добытых ископаемых по плотностям. Образующиеся продукты (тяжелые и легкие фракции) имеют плотность больше или меньше плотности разделяющей среды и из-за этого или всплывают или тонут в ней. Такое обогащение – основное в угольной промышленности. В качестве тяжелых сред применяют органические жидкости, водные растворы солей и суспензии:

Органические жидкости: трихлорэтан С2Н3С13 (плотность 1460 кг/м3), хлороформ СС14 (1600), дибромэтан С2Н4Br2 (2170), ацетилентетрабромид С2Н1Br2 (2930);

Водные растворы неорганических солей: СаСд2 (1654), ZnС12 (2070);

Суспензии: в качестве утяжелителей используют измельченные менее чем до 0,1мм различные вещества – глину (1490), пирит (2500), галенит PbS (3300). При обогащении углей применяется суспензия магнетита (2500).

Магнитное обогащение применяют при переработке руд черных, редких и цветных металлов. Основано оно на использовании различий в магнитных свойствах минералов и пустой породы. При движении частиц через магнитное поле магнитный и немагнитный продукты движутся по разным траекториям. По удельной магнитной восприимчивости минералы делятся на:

Сильномагнитные – магнетит Fe 3 O 4 , пирротин Fe 1-n S n - χ >380*10 -7 м3/кг,

Слабомагнитные – гидроксиды и карбонаты Fe и Mn - χ = (7,5-1,2)* 10-7 м3/кг,

Немагнитные кварц SiO2, апатит Ca5(F,Cl)(PO4)3, рутил TiO2, полевой шпат (Na,K,Ca)(AlSi3O8).

Электрическое обогащение основано на различной электропроводности пород и их свойствах электризоваться. Электрическая сепарация применяется для обогащения зернистых сыпучих тел крупностью 0,05-3 мм, компоненты которых не имеют значительных различий в других свойствах (плотности, магнитной восприимчивости, физико-химических свойствах поверхности).

В зависимости от удельной электропроводности минералы делят на:

Проводники – рутил, пирит,

Полупроводники – магнетит,

Непроводники – кварц, циркон (ZrSO4).

При соприкосновении частиц минерала-проводника с электродом они заряжаются одноименным зарядом. Частица диэлектрика при этом не заряжается. Затем частицы проходят через постоянное электрическое поле и меняют свои траектории в зависимости от заряда на их поверхности.

Обогатительные фабрики – источник значительных выбросов пыли и сточных вод.

Пылеобразование происходит в процессе переработки и хранения твердого минерального сырья. Сильное пылевыделение наблюдается при сухом дроблении, грохочении, при сухих методах обогащения, транспортировке и перегрузке продуктов обогащения.

При работе дробилок основное пылевыделение происходит в местах разгрузки продукта и достигает для валковых дробилок 4г/с, для конусных и щековых – 10 г/с, для молотковых – 120 г/с. При работе мельниц выделяется до 80 г/с пыли.

Сточные воды сбрасываются в хвостохранилища вместе с хвостами обогащения, откуда могут попадать в водоемы.

Основные загрязняющие вещества – грубодисперсные примеси (гравитационные хвосты обогащения), соли в растворенном виде, флотационные реагенты в виде эмульсий, продукты взаимодействия реагентов между собой и с минералами.

Сточные воды могут содержать:

Кислоты, применяемые в технологическом процессе,

Ионы Fe, Cu, Ni, Zn, Pb, Al, Co, Cd, Sb, Hg и другие, которые попадают в сточные воды из-за растворения их соединений кислотами,

Цианиды – основное загрязняющее вещество золотоизвлекающих фабрик и фабрик, применяющих в качестве флотационного реагента циан-плав,

Фториды, если флотореагентами являются NaF, NaSiF6,

Нефтепродукты, чаще всего – керосин, флотоагент в обогащении угля, серы, Cu-Mo, Mo-W рудБ

Фенолы, как флотоагенты, ксантогенаты и дитиофосфаты – флотоагенты с неприятным запахом.

КУРС ЛЕКЦИЙ

Введение. Значение и роль обогащения при использовании различных ПИ…6
Классификация процессов обогащения………………………………………..14
Типы и схемы обогащения и их применения………………………………….21
Процессы грохочения. Конструкции и принцип работы грохотов…………..27
Способы и процессы дробления полезных ископаемых……………………...38
Типы дробилок и схемы дробления…………………………………………….45
Процесс измельчения. Типы и принцип работы мельниц…………………….58
Классификация продуктов………………………………………………………70
Конструкция и принцип работы гидравлических классификаторов. Конструкция и принцип работы воздушных классификаторов………………74
Гравитационные методы обогащения………………………………………….82
Обогащение в тяжелых средах………………………………………………….89
Обогащение на отсадочных машинах……………………………………….....99
Обогащение на концентрационных столах…………………………………..110
Флотационные методы обогащения. Типы флотационных реагентов их применение в производстве…………………………………………………..118
Конструкции и принцип работы флотационных машин…………………….127
Магнитные методы обогащения………………………………………………137
Электрическое обогащение. Обезвоживание продуктов обогащения……..145
Применение различных сгустителей и принцип их работы. Механическое оборудование для фильтрования……………………………………………..154
Список рекомендуемых источников…………………………………………168

ВЕДЕНИЕ. ЗНАЧЕНИЕ И РОЛЬ ОБОГАЩЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ РАЗЛИЧНЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ.

Цель: Получение студентами начальных навыков в терминах и названиях, а так же в значении самого предмета и его ценности в практическом применении.

План:

1.
Основные термины предмета и их значение.

2.
Общие сведения о рудах и минералах цветных и редких металлов.

Подразделения и группировка руд.

3.
Характеристика Месторождений. Концентраты, промпродукты, хвосты.



4.
Значение и роль обогатительных фабрик при использовании полезных ископаемых.

Ключевые слова: руда, минерал, монометаллическая руда, полиметаллическая, полезный компонент, ценный компонент, концентрат, промпродукт, хвосты, пустая порода, окисленные руды, самородные, тонковкрапленные, сульфидные, обогащение полезных ископаемых, обогатительная фабрика, значение (социальное, экономическое).

1. «Основными направлениями экономического и социального раз­вития Республики Узбекистан на современный период, предусматривается дальнейшее совершенствование технологии добычи и переработки руд и концентратов, повышение ком­плексности использования минерального сырья, ускорение внедрения эффективных технологических процессов, улучшение качества и ассортимента выпускаемой продукции.

Развитие экономической стабильности страны является развитие современных технологий и техники различных отраслей промышленности, в том числе обогащения полезных ископаемых.

Источником получения металлов, многих видов сырья, топлива, а так же строительных материалов являются полезные ископаемые.

Полезные ископаемые в зависимости от характера и назначения ценных компонентов принято подразделять на: рудные, нерудные и горючие.

Рудами называют полезные ископаемые, которые содержат ценные компоненты в количестве, достаточном для того, чтобы их извлечение при современном состоянии технологии и техники было экономически выгодным. Руды делятся на металлические и неметаллические.

К металлическим относятся руды, являющиеся сырьем для получения черных, цветных, редких, драгоценных и других металлов.

К неметаллическим – асбестовые, баритовые, апатитовые, фосфоритовые, графитовые, тальковые и другие.

К нерудным относится сырье для производства строительных материалов (песок, глина, гравий, строительный камень, цементное сырье и другие).

К горючим относятся ископаемое твердое топливо, нефть и природный горючий газ.

Ценными компонентами называются отдельные химические элементы или минералы, входящие в состав полезного ископаемого и представляющие интерес ля их дальнейшего использования.

Полезными примесями называют отдельные химические элементы или их природные соединения, которые входят в состав полезного ископаемого в небольших количествах и могут быть выделены и использованы совместно с основным ценным компонентом, улучшая его качество. Например: полезными примесями в железных рудах являются хром, вольфрам, ванадий, марганец и другие.

Сопутствующими компонентами называются ценные химические элементы и отдельные минералы, содержащиеся в полезных ископаемых в сравнительно небольших количествах, выделяемые при обогащении попутно в самостоятельный или комплексный продукт совместно с основным ценным компонентом, и извлекаемые из него в дальнейшем в процессе металлургической плавки или химической переработки. Например: в некоторых рудах цветных металлов сопутствующими являются золото, серебро, молибден и другие.

Вредными примесями называют отдельные примеси и элементы, или природные химические соединения, содержащиеся в полезных ископаемых и оказывающие отрицательное влияние в полезных ископаемых на качество извлекаемых ценных компонентов.

2. По составу руды бывают простые (полезный компонент представлен одним минералом) и сложные (полезный компонент представлен различными по свойствам минералами).

Минералы, не содержащие ценных компонентов, называют пустой породой. При обогащении они удаляются в отходы (хвосты) совместно с вредными примесями.

В результате обогащения основные составные компоненты полезного ископаемого могут выделяться в виде самостоятельных продуктов: концентратов (одного или нескольких) и хвостов. Кроме того, в процессе обогащения из полезного ископаемого могут выделяться так же промежуточные продукты.

Источниками добычи цветных и редких металлов являются месторождения руд или полезных ископаемых, содержащие один или несколько ценных металлов (компонентов), представленных со­ответствующими минералами в сочетании с вмещающей породой. В очень редких случаях в земной коре встречаются самородные эле­менты (медь, золото, серебро) в виде зерен, имеющих кристалличе­ское или аморфное строение. Содержание золота и серебра в руде очень низкое, всего несколько граммов на 1 т руды. На 1 г золота в земной коре приходится около 2 т породы.

Руда - это такая порода, из которой на данном этапе развития техники экономически выгодно извлекать ценные компоненты. Руда состоит из отдельных минералов; те из них, которые надо извлечь, называют ценными (полезными), а те, которые в данном случае не используются, являются минералами вмещающей (пустой) породы.

Однако понятие «пустая порода» условно. По мере развития техники обогащения и способов последующей переработки получае­мых при обогащении продуктов минералы пустой породы, содержа­щиеся в руде, становятся полезными. Так, в апатитонефелиновой ру­де нефелин долгое время являлся минералом пустой породы, но по­сле того как была разработана технология получения глинозема из нефелиновых концентратов, он стал полезным компонентом.

По минеральному составу руды подразделяются на самород­ные, сульфидные, окисленные и смешанные.

Руды также разделяются на монометаллические и полиметаллические.

Монометаллические руды содержат только один ценный ме­талл. Полиметаллические - два и более, например, Си, РЬ, Zn, Fe и др. В природе полиметаллические руды встречаются значительно чаще, чем монометаллические. В большинстве руд содержится не­сколько металлов, но не все они имеют промышленное значение. В связи с развитием техники обогащения становится возможным из­влекать и те металлы, содержание которых в руде мало, но их попут­ное извлечение экономически целесообразно.

Различают также руды вкрапленные и сплошные. Во вкрап­ленных рудах зерна ценных минералов распределены в массе вме­щающей породы. Сплошные руды (колчеданные) состоят на 50...100 % из сульфидов, главным образом пирита (серного колчеда­на) и небольшого количества минералов вмещающей породы.

По размеру вкрапленности зерен полезных минералов руды бывают крупновкрапленные (> 2 мм), мелковкрапленные (0,2...2 мм), тонковкрапленные (< 0,2 мм) и весьма тонковкрапленные (< 0,02 мм). Последние являются труднообогатимыми рудами.

Месторождения промышленных руд по характеру происхож­дения бывают коренными и россыпными. Коренные месторождения залегают в месте первоначального образования. Ценные минералы и минералы вмещающей породы в этих рудах находятся в тесной ассо­циации между собой.

Россыпями называют вторичные месторождения, образовав­шиеся в результате разрушения первичных коренных месторождений и вторичного отложения материала из первичных руд. В россыпных месторождениях присутствуют несульфидные, труднорастворимые минералы в виде зерен округлой формы (скатанных). Сростки отсут­ствуют, что облегчает и удешевляет процесс обогащения россы­пей .

В земной коре содержится около 4 тысяч различных минера­лов, которые представляют собой более или менее устойчивые при­родные химические соединения. Одни из них, такие как кварц, поле­вые шпаты, алюмосиликаты, пирит составляют основную массу зем­ной коры, другие, например, минералы Сu, Рb, Zn, Мо, Ве, Sn нахо­дятся в больших количествах только в определенных участках - руд­ных телах, третьи, такие как германит (минерал германия), гринокит (минерал кадмия) встречаются еще реже, сопутствуя различным ми­нералам в рудах.

К сульфидным относятся минералы, представляющие собой соединения металлов с серой. Например, халькопирит СиРе$2 явля­ется основным минералом меди, сфалерит 2п8 - цинка, молибденит МоS 2 - молибдена.

К оксидам относится значительная часть цветных и редкометальных минералов, например, куприт Сu 2 О, ильменит FеТiО 3 , рутил ТiO 2 , касситерит SnО 2 .

Силикаты представляют собой самую большую группу мине­ралов, залегающих в земной коре. В верхней мантии земли они со­ставляют до 92 %. К силикатам относится основная масса минералов вмещающей (пустой) породы (непригодной для промышленного по­требления), а также минералы лития, бериллия, циркона и др. Среди силикатов наиболее распространен кварц SiO 2 ; его можно извлекать в самостоятельный продукт и использовать в производстве стекла, хрусталя, в строительной промышленности.

К алюмосиликатам относятся сподумен LiAlSi 2 О б и берилл Ве 3 Аl 6 О 18 , являющиеся основными минералами в производстве 1 лития и бериллия, а также шпаты, - альбит NaAlSiзО 8 и микроклин КАlSi 3 О 8 , - основные минералы вмещающей породы (в сред­нем 60 %).

К карбонатам относятся минералы, содержащие углекислоту: кальцит СаСОз (минерал вмещающей породы), церуссит РbСО 3 .

3. Месторождения промышленных руд по характеру происхожде­ния бывают коренными и россыпными. Коренными называют руды, залегающие в месте первоначального образования и расположенные внутри общего массива горных пород. Эти руды после добычи из шахты или из открытого рудника требуют пред­варительно перед обогащением дробления и измельчения. Ценные минералы и минералы пустой породы в таких рудах находятся в тесной ассоциации между собой.

Россыпями называют вторичные месторождения, образова­вшиеся в результате разрушения руд первичных коренных место­рождений и вторичного отложения материала из первичных руд. В россыпях минералы претерпели очень сильные изменения по химическому составу и физическим свойствам. Все минералы и крупные куски руды подверглись разрушению водными пото­ками, выветриванию, изменениям температуры, воздействию хи­мических соединений и т. п.

Речными водными потоками или волнами моря и океана куски руды и минералы обычно переносятся на большие расстояния. Перекатываясь, они принимают округлую форму. Сульфиды при этом разрушаются и в месторождениях полностью отсутствуют, а несульфидные труднорастворимые минералы освобождаются от сростков с минералами пустой породы (песок, галечник). Поэтому руды россыпных месторождений не подвергают дробле­нию и измельчению, и процессы обогащения их значительно проще и дешевле.

С помощью обогащения удаляют вредные примеси из концентратов, поступающих на металлургический завод, затрудняющие процессы плавки и ухудшающие качество получаемых металлов. Удаление вредных примесей позволяет значительно улучшить технико-экономические показатели металлургических процессов. Например, вредной примесью в свинцовом концентрате является цинк. Повышение содержания его в свинцовом концентрате с 10 до 20% увеличивает потери свинца при плавке почти в 2 раза. В процессе обогащения руды получают концентраты (один или несколько), отвальные хвосты и промежуточные продукты.

Концентраты – продукты, в которых сосредоточено основное количество того или иного ценного компонента. Концентраты, по сравнению с обогащаемой рудой характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей.

Промпродукты – продукты, получаемые при обогащении полезных ископаемых и представляющие собой смесь зерен, содержащих полезные компоненты, с зернами пустой породы. Промпродукты характеризуются более низким по сравнению с концентратами и более высоким по сравнению с хвостами содержанием полезных компонентов.

Хвосты – продукты, в которых сосредоточено основное количество пустой породы, вредных примесей и небольшое (остаточное) количество полезного компонента.

Обогащением полезных ископаемых называют совокупность процессов первичной обработки минерального сырья из недр, в результате которых происходит отделение полезных компонентов (минералов) от пустой породы.

Концентраты и хвосты являются окончательными продуктами, а промежуточные продукты - оборотными. Качество концент­ратов, выдаваемых обогатительными фабриками, должно отвечать требованиям, определяемым ГОСТами или техническими усло­виями. Эти требования зависят от назначения концентратов и условий их дальнейшей переработки. В ГОСТах указано наимень­шее допустимое содержание полезного компонента и наибольшее допустимое содержание вредных примесей для концентратов раз­личных сортов.

Результаты обогащения оцениваются несколькими показате­лями и прежде всего полнотой извлечения ценных компонентов и качеством получаемых концентратов.

Извлечением называется отношение количества по­лезного компонента, переведенного в концентрат, к его коли­честву в руде, выраженное в процентах. Извлечение характеризует полноту перевода полезного компонента из руды в концентрат и является одним из важнейших технологических показателей работы обогатительной фабрики.

Выходом называется отношение массы какого-либо про­дукта обогащения к массе переработанной руды, выраженной в процентах.

4.

Обогащением руд называется совокуп­ность процессов первичной обработки ми­нерального сырья, имеющих целью отде­ление всех полезных минералов (а при необ­ходимости и их взаимное разделение) от пустой породы. В результате обогащения получают один или несколько богатых концентратов и отвальные хвосты. Концентрат содержит в десятки, иногда и в сотни раз больше полезного минерала по сравнению рудой. Он пригоден для металлургической переработки или может служить сырьем для других отраслей промышленности. Отвальные хвосты содержат главным образом минералы пустой породы, которые при данных технико-экономических условиях извлекать нецелесообразно или же в этих минералах нет по­требности.

Необходимость процессов обогащения полезных ископаемых подтверждается зависимостью технико-экономических показате­лей металлургической переработки от содержания металла в сырье, поступающем в плавку.

Еще больший экономический эффект получается при обогащении бедных руд, содержащих редкие и другие дорогостоящие металлы (молибден, олово, тантал, ниобий и др.).

Значение обогащения полезных ископаемых обуславливается тем, что:

во первых – во многих случаях лишь после него становятся возможными многие технологические процессы (металлургические, химические и другие);

во вторых – переработка обогащаемого продукта осуществляется с большим экономическим эффектом, чем природного: уменьшается объем перерабатываемого материала, улучшается качество готовой продукции, сокращаются потери ценного компонента с отходами производства и расходы на транспортирование сырья, повышается производительность труда, снижаются расходы топлива, электроэнергии и т. д.

Технология обогащения полезных ископаемых состоит из ряда последовательных операций, осуществляемых на обогатительных фабриках.

Обогатительными фабриками называют промышленные предприятия, на которых методами обогащения обрабатывают полезные ископаемые и выделяют из них один или несколько товарных продуктов с повышенным содержанием ценных компонентов и пониженным содержанием вредных примесей. Современная обогатительная фабрика – это высокомеханизированное предприятие со сложной технологической схемой переработки полезного ископаемого.

Технологическая схема включает сведения о последовательности технологических операций по переработки полезных ископаемых на обогатительной фабрике.

Выводы:

Источником добычи цветных и редких металлов являются месторождения руд или полезных ископаемых, содержащих один или несколько цветных или редких металлов, представленных соответствующими минералами в сочетании с минералами пустой породы.

В очень редких случаях встречаются в земной коре самород­ные элементы (медь, золото, серебро и сера). Обычно они образуют различные химические соединения - минералы, являющиеся есте­ственными продуктами процессов, происходящих в земной коре. Самородные элементы встречаются главным образом в твердом состоянии и представляют собой зерна, имеющие кристаллическое или аморфное строение.

Полезные ископаемые - это природные мине­ральные вещества, которые при данном уровне и состоянии тех­ники могут быть с достаточной эффективностью использованы в народном хозяйстве в естественном виде или после предваритель­ной обработки.

Ископаемые, добываемые из недр земли, бывают твердыми (руда, уголь, торф), жидкими (нефть) и газообразными (природ­ные газы).

По вещественному составу металлические полезные ископа­емые подразделяются на руды черных, цветных, ред­ких, благородных и радиоактивных металлов.

По минеральному составу руды подразделяются на само­родные, сульфидные, окисленные и сме­шанные.

Концентраты и хвосты являются окончательными продуктами, а промежуточные продукты - оборотными. Качество концент­ратов, выдаваемых обогатительными фабриками, должно отвечать требованиям, определяемым ГОСТами или техническими усло­виями.

Из руд цветных и редких металлов, обычно содержащих очень небольшой процент полезного минерала, выплавлять металл без предварительного обогащения экономически невыгодно, а часто и практически невозможно. Поэтому более 95% добываемых руд подвергаются обогащению.

Контрольные вопросы:

1.
На какие группы подразделяются полезные ископаемые?

2.
Что такое руда и какие руды относят к металлическим, неметаллическим, нерудным, горючим?

3.
Что называют ценными компонентами, полезными примесями, сопутствующими компонентами, вредными примесями?

4.
Основное значение обогащения полезных ископаемых и обогатительных фабрик.

5. На какие составляющие делятся руды?

6. Простые и сложные руды.

Что называют концентратом, промпродуктами и хвостами?

Что такое обогащение полезных ископаемых?

Как характеризуются месторождения?

Каковы основные показатели экономической выгоды обогащения полезных ископаемых?

Домашнее задание :

1.
Подготовиться к опросу по заданной лекционной теме.

2.
Подготовить краткий тезис по тематике семинарского задания.

3.
Ответить на вопросы к лекции.

КЛАССИФИКАЦИЯ ПРОЦЕСОВ ОБОГАЩЕНИЯ.

Цель: Знание краткого описания процессов обогащения, для первичного восприятия студентами данного предмета.

План:

1.
Общие сведения по классификации процессов обогащения.

2.
Краткая характеристика основных процессов обогащения.

3.
Краткая характеристика специальных методов обогащения.

4.
Технологические показатели обогащения

Ключевые слова: основные процессы, специальные, грохочение; дробление; измельчение; классификация, гравитационные процессы обогащения; флотационные методы; магнитные методы обогащения; электрическое обогащение, ручная и механизированная рудоразработка, пробовыработка, декрипитация, радиометрические методы обогащения.

1.

Обогащение полезных ископаемых является весьма важным аспектом в добыче и переработки руд. Оно подразделяется на множество методов обогащения, что подразумевает под собой наиболее качественный и полный процесс обогащения.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зерна ценных мине­ралов.

К собственно обо­гатительным про­цессам относятся про­цессы разделения руды и других продуктов по физи­ческим и физико-химическим свойствам минералов, входя­щих в их состав. К этим процессам относятся гравита­ционное обогащение, флота­ция, магнитная и электри­ческая сепарация и др.

Большинство процессов обогащения проводится в во­де и получаемые продукты содержат большое количе­ство ее. Поэтому возникает необходимость во вспомогательных процессах. К ним относится обезвоживание продуктов обогащения, включающее сгущение, фильтрование и сушку.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически. В зависи­мости от назначения схемы могут быть качественными, количе­ственными, шламовыми. Кроме указанных схем обычно соста­вляют схемы цепи аппаратов.

Таким образом, обогащение полезных ископаемых можно разделить на основные и вспомогательные процессы (методы) обогащения.

К основным методам обогащения относятся:

1.грохочение; 2.дробление; 3.измельчение; 4.классификация; 5.гравитационные процессы обогащения; 6.флотационные методы; 7.магнитные методы обогащения; электрическое обогащение.

К вспомогательным методам относят:

1.ручную и механизированную рудоразработку и промывку. Избирательное дробление и декрипитацию;

2.обогащение по трению, форме и упругости;

3.радиометрические методы обогащения;

4. химические методы обогащения.

2 Грохочением называют процесс разделения кусковых и зернистых материалов на продукты различной крупности, называемые классами, с помощью просеивающих поверхностей с калиброванными отверстиями (колосниковые решетки, листовые и проволочные решета).

В результате грохочения исходный материал разделяется на надрешетный (верхний) продукт, зерна (куски) которого больше размера отверстий просеивающей поверхности, и подрешетный (нижний продукт), зерна (куски) которого меньше размера отверстий просеивающей поверхности.

Дробление и измельчение – процесс разрушения полезных ископаемых под действием внешних сил до заданной крупности, требуемого гранулометрического состава или необходимой степени раскрытия материалов. При дроблении и измельчении нельзя допускать переизмельчения материалов, так как это ухудшает процесс обогащения полезного ископаемого.

Классификация – процесс разделения смеси минеральных зерен на классы различной крупности по скоростям их осаждения в водной или воздушной средах. Классификация осуществляется в специальных аппаратах, называемых классификаторами, если разделение происходит в водной среде (гидроклассификация), и воздушными сепараторами, если разделение происходит в воздушной среде.

Гравитационными процессами обогащения называют процессы обогащения, в которых разделение минеральных частиц, отличающихся плотностью, размером или формой, обусловлено различием в характере и скорости их движения в среде под действием силы тяжести и сил сопротивления.

К гравитационным процессам относятся отсадка, обогащение в тяжелых средах, концентрация на столах, обогащение в шлюзах, желобах, струйных концентраторах, конусных, винтовых и противоточных сепараторах, пневматическое обогащение.

Флотационные методы обогащения – процесс разделения тонкоизмельченных полезных ископаемых, осуществляемый в водной среде и основанный на различии их способности, естественной или искусственно создаваемой, смачиваться водой, что определяет избирательное прилипание частиц минералов к поверхности раздела двух фаз. Большую роль при флотации играют флотационные реагенты – вещества, позволяющие процессу идти без особых осложнений и ускоряющие сам процесс флотации, а так же выход концентрата.

Магнитные методы обогащения полезных ископаемых основаны на различии магнитных свойств разделяемых минералов. Разделение по магнитным свойствам осуществляется в магнитных полях.

При магнитном обогащении используются только неоднородные магнитные поля. Такие поля создаются соответствующей формой и расположением полюсов магнитной системы сепаратора. Таким образом магнитное обогащение осуществляется в специальных магнитных сепараторах.

Электрическим обогащением называется процесс разделения минералов в электрическом поле, основанный на различии их электрических свойств. Этими свойствами являются электропроводность, диэлектрическая проницаемость, трибоэлектрический эффект.

3. Ручная рудоразработка и породовыборка как способ обогащения основаны на использовании различия во внешних признаках разделяемых минералов – цвете, блеске, форме зерен. Из общей массы полезного ископаемого отбирают обычно тот материал, которого содержится меньше. В том случае, когда из полезного ископаемого отбирается ценный компонент, операция называется рудоразработкой, когда пустая порода – породовыработкой.

Декрипитация основана на способности отдельных минералов растрескиваться (разрушаться) при их нагревании и последующем быстром охлаждении.

Обогащение по трению, форме и упругости основано на использовании различий в скоростях движения разделяемых частиц по плоскости под действием сил тяжести. Основным параметром движения частиц по наклонной плоскости, является коэффициент трения, зависящий в основном от характера поверхности самих частиц и их формы.

Адиометрическая сортировка , основанная на различии радиоактивных свойств минералов или силе их излучения

Радиометрические методы обогащения основаны на различной способности минералов, испускать, отражать, или поглощать различные виды излучения.

К химическим методам обогащения относят процессы, связанные с химическими превращениями минералов (или только их поверхности) в другие химические соединения, в результате чего изменяются их свойства, или с переводом минералов из одного состояния в другое.

Химическое и бактериальное обогащение, основанное на спо­собности минералов, например сульфидов, окисляться и раство­ряться в сильно кислых растворах. При этом металлы переходят в раствор, из которого извлекаются различными химико-металлур­гическими методами. Присутствие в растворах некоторых типов бактерий, например тионовых, значительно интенсифицирует процесс растворения минералов.

В технологических схемах обогащения сложных комплексных руд часто используют одновременно два или три различных ме­тода обогащения, например: гравитационный и флотационный, гравитационный и магнитный и т. п. Применяются также комби­нированные методы обогащения в сочетании с гидрометаллурги­ческими.

Для успешного применения того или иного метода обогащения необходимо наличие у минералов достаточного различия тех свойств, которые используются в данном методе.

4. Процесс обогащения характеризуется следующими техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла.

Содержание металла в руде или продукте обогащения - это отношение массы этого металла в руде или продукте обогащения к массе сухой руды или продукта, выраженное в процентах. Содержание металла принято обозначать греческими буквами α (в исходной руде), β (в концентрате) и θ (в хвостах). Содержание драгоценных металлов выражается обычно в единицах массы (г/т).

Выход продукта - отношение массы продукта, полученного -при обогащении, к массе переработанной исходной руды, выражен­ное в долях единицы или процентах. Выход концентрата (γ) показы­вает, какую долю от общего количества руды составляет концентрат.

Степень сокращения - величина, обозначающая во сколько раз выход полученного концентрата меньше количества перерабо­танной руды. Степень сокращения (К) выражает количество тонн; руды, которое нужно переработать, чтобы получить 1 т концентрата, и рассчитывается по формуле:

К= 100/ γ

Для руд цветных и редких металлов характерен малый выход концентрата и, следовательно, высокая степень сокращения. Выход концентрата определяется прямым взвешиванием или по данным химического анализа по формуле:

γ =(α - θ/β - θ)100,%.

Степень обогащения, или степень концентрации показывает, во сколько раз увеличилось содержание металла в кон­центрате по сравнению с содержанием металла в руде. При обогаще­нии бедных руд этот показатель может составлять 1000... 10000.

Извлечение металлаε - это отношение массы металла в кон­центрате к массе металла в исходной руде, выраженное в процентах

ε=γβ/α

Уравнение баланса металла

εα=γβ

связывает основные технологические показатели процесса и позволяет рассчитать степень извлечения металла в концентрат, которая, в свою очередь, показывает полноту перехода металла из руды в концентрат.

Выход продуктов обогащения можно определить по данным химических анализов продуктов. Если обозначить:- выход концентрата; - содержание металла в руде; - содержание металла в концентрате; - содержание металла в хвостах, а - извлечение металла в концентрат, то можно составить баланс металла по руде и продуктам обогащения, т. е. коли­чество металла в руде равно сумме его количеств в концентрате и хвостах

Здесь за 100 принят выход исходной руды в процентах. Отсюда выход концентрата

Извлечение металла в концентрат можно подсчитать по формуле

Если выход концентрата неизвестен, то

Например, при обогащении свинцовой руды, содержащей 2,5% свинца, получен концентрат с содержанием 55% свинца и хвосты, содержащие 0,25% свинца. Подставляя результаты химических анализов в приведенные выше формулы, получим:

выход концентрата

извлечение в концентрат

выход хвостов

степень обогащения:

Качественно-количественные показатели обогащения харак­теризуют техническое совершенство технологического процесса на фабрике.

Качество конечных продуктов обогащения должно соответство­вать требованиям, предъявляемым потребителями к их химическому составу. Требования к качеству концентратов называются кондициями и регламентируются ГОСТ, техническими условиями (ТУ) или временными нормами и разрабатываются с учетом технологии и экономики I переработки данного сырья и его свойств. Кондициями устанавливается минимально или максимально допустимое содержание различных со­ставных компонентов полезного ископаемого в конечных продуктах обогащения. Если качество продуктов соответствует кондициям, то эти продукты называются кондиционными.

Выводы:

Обогатительная фабрика является промежуточным звеном между рудником (шахтой) и металлургическим заводом. Руда различной крупности, поступающая с рудника, при переработке на обогатительной фабрике проходит различные процессы, которые по своему назначению можно разделить на подготовитель­ные, собственно обогатительные и вспомогательные.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зе