Какой лед дольше не тает. Быстро ли тает лёд? Ледяной покров Гренландии

Добрый день, дамы!
Хочу рассказать и показать удивительный шарф - Харти Лед с мятным утком, 100% хлопок.

Шарф попал ко мне погостить благодаря чудесной Наташе Natusyanya (за что ей большое спасибо) и так получилось, что с ее позволения съездил с нами на турецкие берега, достойно пройдя испытание тридцатиградусной жарой.
Мании по Харти елкам я как-то не поддалась. Интерес к зверю был, но прошлый опыт общения с рукотканами испугал меня своей неожиданностью в плане ттх шарфов и я решила остановиться на любимых и проверенных Ошах. И тут Наташа предложила в аренду свой Лед. Я подумала, что попробовать таки надо, чтоб поставить галочку, и мы с Наташей быстро договорились.
В кирпичике он не произвел на меня впечатления, но я просто влюбилась в него с первой намотки. Ни разу еще я не мотала на столько потрясающий шарф: цвет, такая зеркальная градация, обнимательность, нежность... При этом при относительной тонкости мои 8,5 крайне прыгучих кг несет отлично, и, что важно в случае ерзающего ребенка, намотка не деформируется. Поскольку пост я писала долго, мои 8,5 прыгающих кг превратились в 9,5 бегающих кг. И если 8 кг он несет легко и непринужденно, то после 9 кг носить в нем часами уже сложновато... но при желании можно, что я вчера и доказала, прогуляв в нем с 11 до 17:30 с несколькими перерывами, конечно, и сменами КНК на ДР, при чем последний отрезок ношения получился около трех часов. Последний час явно был лишним, но больно хороша была погода...
Я как то все время гонялась в последнее время за шарфами с шелком. Три живущих у меня рукоткана - с шелком, любимые Оши с шелком. А попробовав хлопок от Харти я поняла, что не надо мне шелков, мягкий хлопок обладает почти той же нежностью, и при этом не скользит.
Я поняла, что вот оно, идеальное мое - хлопок, плетение Елочка (или зигзаг у КК). Мои идеальные ттх.

В отпускной стопочке:

Отдельно хочу сказать про цвет - он идеален. Более темный с краев, в середину он плавно перетекает в зеленый, от темного края к светлому... Я бы не назвала его шарфом подо все, очень ярок, но красиво сочетается с большим количеством цветов. Его бы фотографировать на Мальдивах, на фоне белого песка и лазурного моря, очень гармонировал бы цвет с водой и песком. Кстати, вот что напомнили мне цвета в шарфе: море, если смотреть на него, подлетая к Мале (столица Мальдив). Видишь вот такие же оттенки на воде...
Поносить удалось в разных условиях: в +10 в Москве с ветровочкой сына защищал от ветра, шикарно показал себя в дороге, когда мы ехали на метро и в аэроэкспрессе в аэропорт, и поразил меня в + 30, когда я намотала его для фото.
Я люблю носить с расправленными полотнами (кажется, я вообще не помню, как носить с нерасправленными)))), и шарфы, не очень хорошо тянущиеся, сын сбивает, прыгая и высовывая ручки. У Льда все идеально: полотно ложится обратно, и если выправить ручки наружу, просто аккуратно обтечет ребенка, крепко поддерживая на уровне поясницы. На плечах лежит мягко и аккуратно, легко подтягивается (кстати, борт тканный, подтягивать надо хорошо), скользит в меру, как раз столько, чтоб была комфортная намотка, которая не едет после завязывания узла. Кстати об узле: если завязать хирургический узел, намотка под 9,5 кг не ползет вообще.
Для фото мы выбрали время между 15 и 16:30, середина мая в Турции. Жара еще не безбожная, с моря дует ветерок, но сгореть на солнце уже можно как здрасьте. Часовая прогулка в трехслойной намотке не вызвала дискомфорта вообще, только в конце в помещении стало жарковато там, где мы с сыном соприкасались животами. Шарф продувается шикарно! В тонких Оша Розах Шамбре под полотнами на спине мне немного припекало спину, здесь же не было вообще ощущения, что на мне есть ткань! Я была в восторге! Он даже как будто холодил! Лед, который не плавится на жарком солнышке))))
Как всегда много слов))) но в этот шарф я просто влюбилась и готова петь ему дифирамбы снова и снова)

Плетение вблизи:

Кстати, мой муж, который тоже носит сына в меру возможностей, очень заценил Лед. И очень высоко оценил его внешний вид, что в нашем случае редкость, многоцветные градации муж очень не любит.
В течение отпуска мы несколько раз ходили от отеля в Сиде, дорога идет по променаду вдоль моря и занимает минут 20 бодрым шагом. Из-за сна ребенка и нашего расписания прогуляться туда так, чтобы не попасть на жару оказалось невозможно. И вот в очередной раз мы пошли утром, около 10 часов, с расчетом вернуться в отель уже по жаре. Сына вызвался нести муж, пожелав намотать Лед (мог бы взять Шамбре, но Лед понравился больше). Прогулка в итоге заняла 3,5 часа с перерывам в 20 минут на покормиться-поползать по родителям, муж впервые мотался без зеркала. Он в восторге от ттх! Рыхлый, грузовозный, облегает и не сбивается, легко мотается. Но самое потрясающее: в жару за 30 мои мужчины даже не думали свариться! При чем в намотке с расправленными полотнами! Конечно, жарко было, но ветер с моря так продувал шарфик, что было весьма комфортно! Я носила на жаре в Келуме и Розих Шамбре - было гораздо жарче из за менее рыхлого плетения.
В ДР мне он тоже очень понравился. За спину я начала мотать пару месяцев как, и далеко не каждый день, но Лед могу намотать вслепую и намотка получится вполне приличная. Полотно по спине идет легко, не цепляется и вполне хорошо подтягивается, узел получается аккуратный и красивый.
Ну и наконец покажу то, ради чего этот шарф был взят с собой - фооотки!

Ну и традиционный серьезный бонус:

Большое спасибо Наташе за возможность поносить это чудо!

Читал, что американские ученые создали лед, который не тает, кто у нас в России занимается этим направлением, а то промышленное холодильное оборудование очень дорогое и энергии потребляет многовато. Ученые, создайте дешевый лёд!!

Да, действительно. В настоящее время получены 14 различных структурных модификаций льда с различными свойствами. Среди них есть кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и физическими свойствами (темературой плавления, кристаллизации и др.). Правда, все, кроме обычного льда I, кристаллизующего в гексагональной решетке , образуются в условиях, близких к космическим - при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия на Земле не встречаются. Но их можно моделировать в современных лабораториях. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров - это так называемый кубический лед . Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда .

Наиболее изученным является лёд I -й природной модификации . Лёд встречается в природе в виде льда (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Он распространён во всех областях обитания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. Лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду - криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

Табл. 1. - Некоторые свойства льда I

Свойство

Значение

Примечание

Теплоемкость, кал/ (г ··°C)

Теплота таяния, кал/г

Теплота парообразования, кал/г

Сильно уменьшается с понижением температуры

Коэффициент термического расширения, 1/°C

9,1·10 -5 (0°C)

Теплопроводность, кал/ (см сек ··°C)

Показатель преломления:

для обыкновенного луча

для необыкновенного луча

Удельная электрическая проводимость, ом -1 ·см -1

Кажущаяся энергия активации 11ккал/моль

Поверхностная электропроводность, ом -1

Кажущаяся энергия активации 32ккал/моль

Модуль Юнга, дин/см

9·10 10 (-5°C)

Поликристаллич. лёд

Сопротивление, Мн/м 2 :

раздавливанию

Поликристаллический лёд

Поликристаллический лёд

Поликристаллический лёд

Средняя эффективная вязкость, пз

Поликристаллический лёд

Показатель степени степенного закона течения

Энергия активации при деформировании и механической релаксации, ккал/моль

Линейно растет на 0,0361 ккал/ (моль ·°C) от 0 до 273,16 К

Примечание. 1 кал/(г°С)=4,186 кджl ((К); 1 ом -1 см -1 =100 сим/м; 1 дин/см =10 -3 н/м; 1 кал/ (см (сек °С)=418,68 вт/ (м (К); 1 пз= 10 -1 н (сек/м 2 .

Лёд II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает -170°С. При нагревании приблизительно до -150°С лёд превращаются в кубический лёд Ic .

При конденсации паров воды на более холодной подложке образуется аморфный лёд. Обе эти формы льда могут самопроизвольно переходить в гексагональный лёд, причём тем скорее, чем выше температура.

Лёд IV-й модификации является метастабильной фазой льда. Он образуется гораздо легче и особенно стабилен, если давлению подвергается тяжёлая вода.

Кривая плавления льда V и VII исследована до давления 20 Гн/м 2 (200 тыс. кгс/см 2 ). При этом давлении лёд VII плавится при температуре 400°С.

Лёд VIII является низкотемпературной упорядоченной формой льда VII.

Лёд IX - метастабильная фаза, возникающая при переохлаждении льда III и по существу представляющая собой его низкотемпературную форму.

Табл. 3. - Некоторые данные о структурах модификаций льда

Примечание. 1 A=10 -10 м.

Две последние модификации льда - XIII и XIV - открыли ученые из Оксфорда совсем недавно, в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора - соляной кислоты, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но они могут встречаться на замерзших спутниках других планет.

Европейское космическое агентство показало, как выглядит кратер Королёва на Марсе. Снимки сделала станция Mars Express.

Автоматическая межпланетная станция «Марс-экспресс» стартовала с космодрома «Байконур» 2 июня 2003 года. После отделения спускаемого аппарата станция вышла на орбиту искусственного спутника Марса 20 декабря, и к 15-летию этого события Европейское космическое агентство опубликовало некоторые снимки, сделанные недавно – в апреле 2018 года – при помощи камеры High Resolution Stereo.

В кадре – кратер Королёва, получивший свое имя в честь знаменитого советского инженера-конструктора. Кратер диаметром 82 километра находится к югу от обширного поля дюн Олимпия Ундеа (Olympia Undae), окружающего северную полярную шапку планеты. Он выглядит заснеженным, но на самом деле его заполняет первозданный лёд.

Как и на Земле, на Марсе существуют времена года, меняющие пейзаж, однако в кратере Королёва лед никогда не тает. В далеком прошлом с поверхностью планеты столкнулось массивное небесное тело, образовав огромное углубление – астрономы называют его «холодной ловушкой». Дно кратера уходит в глубину приблизительно на 2 километра, и в этой пустоте вырос ледяной купол диаметром 60 километров и толщиной 1,8 километра. По объему он содержит около 2200 кубических километров льда, возможно, смешанного с марсианской пылью.

Воздушные потоки, достигнув вершины купола, охлаждаются, и это не позволяет ледяной глыбе растаять. В меньшем по размеру марсианском кратере, 36-километровом Louth в районе Северного полюса, наблюдается то же геологическое явление.

.

Лед снабжает планету огромным объемом пресной воды и сдерживает глобальный уровень воды в мировом океане от катастрофического повышения.

Кроме этого, лёд содержит полезную информацию о прошлом нашей планеты, а также рассказывает о будущем климата на Земле.

Вот самые интересные факты про лёд на Земле и за ее пределами:


Названия льда

1. У льда есть множество разных названий.


Только у морского льда есть несколько названий, не говоря уже про лед в Арктике и Антарктике. Мелкобитый лёд, внутриводный лёд, нилас, и блинчатый лёд - это лишь часть того, что можно найти в Арктике и Антарктиде.

Если вы будете проплывать около северного или южного полюса, то вам лучше знать, где айсберг, а где подошва припая (лед, скреплённый с берегом или дном), в чем разница между подторосом и торосом, и между плавучей льдиной и флобергом (плавучая гора).

Но если вам кажется, что этих слов вам более, чем достаточно, то вы удивитесь, узнав, что народ Аляски инупиаты имеют 100 различных названии льда, что логично для народа, который живет в холодных местах.

Ледяной дождь

2. Ледяной дождь происходит, когда снег проходит сквозь теплые и холодные слои атмосферы.


Ледяной дождь может быть смертельно опасным. Вот как он возникает: снег входит в теплый слой атмосферы и тает, превращаясь в капли дождя, потом проходит через холодный слой воздуха. Капли дождя не успевают замерзнуть, проходя этот холодный слой, но когда они сталкиваются с холодной поверхностью, эти капли моментально превращаются в лёд.

В результате на дорогах образуется толстый слой льда, и всё вокруг превращается в ледяной каток. Лёд также скапливается на электропроводах, что может привести к их обрыву. Лёд, скопившийся на ветках, может их обломать, что очень опасно для людей.

Сегодня существуют лаборатории, в которых учёные пытаются предсказать, где и как этот дождь может нанести удар. Одна из таких лабораторий находится в Нью-Гэмпшире, где учёные создают симуляции ледяных дождей.

Сухой лёд

3. Сухой лёд не состоит из воды.


На самом деле это замороженный диоксид углерода, который может изменять своё состояние от твердого до газообразного при комнатной температуре и атмосферном давлении, минуя жидкую фазу. Сухой лёд довольно полезен для поддержания холода в некоторых товарах, так как он замерзает при температуре - 78,5 градусов по Цельсию.

Изобретение холодильника

4. Лёд помог людям изобрести холодильник.


Тысячи лет назад люди уже использовали лёд для сохранения свежести продуктов. В 1800-х годах люди вырезали кубы льда из замерзших озер, привозили их и хранили в специальных изолированных помещения и погребах. К концу 19-го века люди использовали бытовые ящики со льдом для продуктов, которые позже превратились в холодильники.

Лёд не только упростил жизнь отдельным домам, но и сыграл ключевую роль в массовом производстве и распространении мяса и других скоропортящихся продуктов. Это всё в итоге привело к урбанизации и развитию множества других сфер промышленности.


К концу века загрязнение окружающей среды и горы мусора, выброшенные в сточные воды, привели к загрязнению множества естественных запасов льда. Эта проблема привела к разработке современного электрического холодильника. Самый первый коммерчески успешный холодильник был выпущен в 1927 году в США.

Ледяной покров Гренландии

5. Ледяной покров Гренландии содержит 10% мирового ледникового льда на планете, и он быстро тает.


Данный ледяной покров представляет собой вторую в мире ледяную массу после Антарктического ледяного покрова, и содержит достаточно воды, чтобы поднять уровень мирового океана минимум на 6 метров. Если же на Земле растает каждый ледник и ледниковый покров, то уровень воды повысится более, чем на 80 метров.

Согласно исследованию, опубликованному в 2016 году в журнале Nature Climate Change, каждую секунду ледяной покров Гренландии теряет 8 000 тонн. Ученные уже несколько лет исследуют этот ледяной покров, чтобы лучше понять, как он реагирует на изменение климата на Земле.

Айсберги и ледники

6. Айсберги и ледники бывают не только белыми.


Белый свет состоит из множества цветов, и каждый имеет свою длину волны. По мере того, как снег накапливается на айсберге, пузырьки воздуха в снегу сжимаются, и в лёд проникает света больше, чем отражается от пузырьков и маленьких кристаллов льда.

Именно здесь весь фокус: цвета с более длинными волнами, такие как красный и жёлтый, поглощаются льдом, в то время как цвета с более короткой длиной волны, такие как синий и зелёный, отражают свет. Поэтому айсберги и ледники имеют синевато-зеленоватый оттенок.

Ледниковые периоды на Земле

7. На Земле было множество ледниковых периодов.


Часто когда мы слышим о ледниковом периоде, мы представляем себе только один такой период. На самом деле, еще до нас на планете было несколько ледниковых периодов, и все они были очень суровыми. Учёные предполагают, что в какие-то периоды времени наша планета была полностью заморожена, и учёные называют эту гипотезу "Земля-снежок".


Существуют предположения, что некоторые ледниковые периоды являлись результатом эволюции новых форм жизни - растений, а также и одноклеточных и многоклеточных организмов – которые способствовали изменению концентрации кислорода и углекислого газа в атмосфере настолько, что это привело к изменению парникового эффекта.

Земля продолжит проходить циклы теплых и холодных периодов. Однако на данном этапе, учёные предсказывают, что в последующие 100 лет, темпы потепления будут как минимум в 20 раз превышать темпы предыдущих периодов потепления.

Пресная вода на Земле

8. Более 2/3 запасов пресной воды на Земле хранится в ледниках.


Тающие ледники приведут не только к повышению уровня мирового океана, но и приведут к существенному снижению уровня запасов пресной воды и её качества. Кроме этого таяние ледников приведет к проблеме энергоснабжения, так как многие гидроэлектростанции не смогут работать должным образом - из-за таяния многие реки поменяют свои русла. В некоторых регионах, таких как Южная Америка и Гималаи эти проблемы уже ощущаются.

Планеты льда

9. Лёд есть не только на Земле.


Вода состоит из водорода и кислорода, а этих элементов достаточно в нашей Солнечной системе. В зависимости от их близости к Солнцу разные планеты в нашей Солнечной системе имеют разные объемы воды. Например, Юпитер и Сатурн находятся далеко от Солнца, и на их спутниках намного больше воды, чем на Земле, Марсе и Меркурии, где из-за высоких температур, водороду и кислороду сложнее создавать молекулы воды.


Европа - спутник Юпитера

У дальних планет есть несколько замороженных спутников, один из которых называется Европа – 6-й спутник Юпитера. Этот спутник покрыт несколькими слоями льда, общая толщина которых составляет несколько километров. На поверхности Европы были обнаружены трещины и волнистости, которые, вероятно, были образованы волнами подводного океана.


Энцелад - Спутник Сатурна

Большие запасы воды на спутнике Европа позволили учёным предположить, что на нём может быть жизнь.

Ледяные вулканы (криовулканы)

10. Есть такая вещь, как ледяной вулкан (криовулкан)


Энцелад, один из спутников Сатурна, может похвастаться одной очень интересной особенностью. Территория его северного полюса содержит криовулканы – экзотический тип гейзеров, который извергают лёд вместо лавы.


Это происходит, когда лёд, находящий глубоко под поверхностью нагревается и превращается в пар, после чего он извергается в холодную атмосферу спутника в виде частиц льда.


Жизнь на Марсе

11. Лёд на Марсе может помочь узнать о жизни на Красной планете.


Согласно информации со спутников, на Марсе есть лёд (как сухой, так и в виде замороженной воды). Этот лёд находится в полярных шапках Красной планеты и в областях вечной мерзлоты.


Запасы льда на Марсе могут дать ответ на вопрос, которой уже много лет обсуждают - может ли на Марсе поддерживаться жизнь.

В будущих миссиях на Марс учёные постараются узнать, могут ли запасы воды, которая возможно появляется из подземных ледников, содержать жизнь.

Замороженная мумия человека

12. Наиболее сохранившиеся мумии были заморожены.


Ла Донцелла

От Анд до Альп, замороженные останки людей позволяют ученым всё больше узнавать о том, как люди жили сотни и тысячи лет назад. Одни из наиболее сохранившихся останков принадлежат 15-летнему подростку из племени инков, которого назвали Ла Донцелла (La Doncella) или Дева.

Предположительно девушку принесли в жертву около 500 лет назад, на вершине вулкана Льюльяйльяко, что находится в Аргентине. Девушку нашли вместе с другими детьми. Предполагается, что она умерла от переохлаждения.


Эци

Еще одна замороженная мумия - Эци - принадлежит эпохе халколита. Эту ледяную мумию человека нашли в 1991 году в Эцтальских Альпах около границы Австрии с Италией. Предположительно мумии - 5 300 лет.

В горах провинции Шаньси (Shanxi) в Китае находится самая большая в стране ледяная пещера - 85-метровое подземное сооружение в форме кегли для боулинга, - расположенная сбоку горы. Ее стены и пол покрыты толстым слоем льда, а большие сосульки и сталактиты свисают от потолка до пола. У пещеры Нину (Ningwu Cave) есть одна уникальная особенность: она остается замерзшей на протяжении всего лета, даже когда наружная температура поднимается до летних максимумов.

По всей Континентальной Европе, Центральной Азии и Северной Америке много таких ледяных пещер, где зима длится круглый год. Большинство из них расположены в более холодных регионах, таких как Аляска, Исландия и Россия, где низкие температуры, сохраняющиеся в течение года, помогают сохранить пещеры в замерзшем виде. Однако ледяные пещеры можно найти и в более теплом климате.

Ледяная пещера Нину в Китае. Фото кредит: Zhou Junxiang/Image China

Большинство из этих пещер - так называемые «холодные ловушки». В этих пещерах удобно расположены расщелины и выходы, которые позволяют холодному воздуху проникнуть туда зимой, и через которые не может проникнуть теплый воздух летом. Зимой холодный плотный воздух оседает в пещере, вытесняя любой собравшийся здесь теплый , который поднимается вверх и покидают пещеры. Летом холодный воздух остается в пещере, поскольку относительно теплый воздух поднимается вверх и не может попасть в нее.

Лед внутри пещеры также действует как буфер, помогая стабилизировать температуру внутри. Лед немедленно охлаждает любой поступающий снаружи теплый воздух, прежде чем он сможет вызвать значительное потепление внутри пещеры. Конечно, под его влиянием лед подтаивает, но температура внутри пещеры остается практически неизменной. Есть и обратный эффект: зимой, когда в пещеру попадает очень холодный воздух, любая жидкая вода замерзает, выделяя тепло и не давая температуре в пещере упасть слишком низко.

Для формирования ледяных пещер также необходимо достаточное количество воды в течение нужного периода времени. Зимой климат должен быть таким, чтобы на горах было достаточно снега, а летом температура должна быть достаточно высокой, чтобы растаял, но воздух в пещере не слишком прогрелся. Для того, чтобы ледяная пещера сформировалась и поддерживалась, должен сохраняться тонкий баланс между всеми этими факторами.


Самая большая ледяная пещера в мире – Айсризенвельт (Eisriesenwelt), расположенная в Верфене, Австрия, примерно в 40 км к югу от Зальцбурга. Пещера протянулась более чем на 42 километра. Фото: Michael & Sophia/Flickr

Ледяная пещера Декора Айс Кейв (Decorah Ice Cave) в штате Айова, США, является одной из крупнейших пещер на Среднем Западе Америки, в которых есть лед. Пещера остается относительно свободной ото льда осенью и ранней зимой. В этот период холодный зимний воздух поступает в пещеру и понижает температуру каменных стен. Когда весной начинает таять снег, талая вода просачивается в пещеру и замерзает при контакте с еще холодными стенами, а в мае-июне ледяной слой достигает максимальной толщины в несколько сантиметров. Лед часто остается внутри пещеры до конца августа, в то время как наружная температура поднимается выше 30 градусов.


Подобное явление наблюдается и в Ледяной Шахте Каудеспорт (Coudersport Ice Mine) в Пенсильвании. Это небольшая пещера, где лед образуется только в летние месяцы, а зимой тает. Фото кредит: rivercouple75/Tripadvisor


Грохочущая Ледяная Бездна (Booming Ice Chasm) в канадских Скалистых горах в Альберте известна своей невероятной акустикой. Говорят, что, когда камни отваливаются и падают на пол пещеры, на 140 метров вниз, это вызывает грохочущее эхо.