Как работает российский боевой лазер. Лазер: российское оружие, превращающее вражеские спутники в груду металла

Лазер - это оптический квантовый генератор, аббревиатура от Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Инженерно-военная мысль еще со времен, когда А.Толстым был написан фантастический роман «Гиперболоид инженера Гарина», активно ищет возможные пути реализации идеи создания лазерного , которым можно было бы резать бронетехнику, самолеты, боевые ракеты и т. д.


В процессе исследований лазерное оружие разделилось на «прожигающее», «ослепляющее», «электро-магнитно-импульсное», «перегревающее» и «проекционное» » (на облака проектируют картины, которые способны деморализовать неподготовленного или суеверного противника).

В свое время США планировало разместить на околоземной орбите спутники-перехватчики, способные уничтожать на начальной траектории полета советские баллистические межконтинентальные ракеты. Эта программа носила название «Стратегическая оборонная инициатива» (СОИ). Именно СОИ дала толчок к активной разработке лазерного оружия в СССР.

В Советском Союзе для уничтожения американских спутников-перехватчиков были разработаны и построены несколько экспериментальных образцов лазерных космических пушек. На тот момент времени они могли работать только при наличии мощных наземных источников питания, об их установке на военном спутнике или космической платформе не могло быть и речи.

Но несмотря на это, эксперименты и испытания продолжались. Первую отработку лазерной пушки было решено провести в морских условиях. Пушку установили на танкер вспомогательного флота «Диксон». Для того чтобы получить требуемую энергию (не менее 50 мегаватт) дизели танкера были усилены тремя реактивными двигателями от Ту-154. По некоторым данным, было проведено несколько успешных испытаний по поражению целей на берегу. Затем случилась перестройка и развал СССР, все работы прекратились из-за отсутствия финансирования. А «лазерный корабль» «Диксон» при разделе флота достался Украине. Дальнейшая его судьба неизвестна.

Одновременно велись работы по созданию космического аппарата «Скиф», который мог бы нести на себе лазерную пушку и обеспечивать ее энергией. В 1987 году даже должен был состояться запуск этого аппарата, который носил название «Скиф-Д». Его создавали в рекордные сроки в НПО «Салют». Прототип космического истребителя с лазерной пушкой был построен и готов к запуску, на старте стояла ракета «Энергия» с пристыкованным сбоку 80-тонным аппаратом «Скиф-Д». Но случилось так, что именно в это время на Байконур приехал известный радетель интересов США Горбачев. Собрав за три дня до старта «Скифа» советскую космическую элиту в конференц-зале Байконура, он заявил: «Мы категорически против переноса гонки вооружений в космос и покажем в этом пример». Благодаря этой речи «Скиф-Д» был выведен на орбиту лишь для того, чтобы тут же быть брошенным на сожжение в плотные слои атмосферы.

А ведь по сути успешный запуск «Скифа» означал бы полную победу СССР в борьбе за ближний космос. Например, каждый истребитель типа «Полет» мог уничтожать всего один аппарат противника, при этом он погибал сам. «Скиф» же мог летать на орбите довольно долго, поражая при этом своей пушкой аппараты противника. Еще одним неоспоримым достоинством «Скифа» было то, что его пушке не требовалась особая дальнобойность, для уничтожения предполагаемых целей легкоуязвимых орбитальных спутников хватило бы и 20-30 км действия. А вот американцам пришлось бы ломать голову над космическими станциями, бьющими на тысячи километров по маленьким бронированным боеголовкам, несущимся на бешенной скорости. «Скифы» же сбивали спутники на догоне, когда скорость преследуемой цели по отношению к охотнику можно сказать просто улиточная.


Маневрирующий спутник "Полет-1"

Получается, что флот «Скифов» разносил бы в щепки американскую низкоорбитальную группировку военных спутников с стопроцентной гарантией. Но все это не состоялось, хотя оставшаяся научно-техническая база является отличной основой для современных разработчиков.

Следующей разработкой КБ «Салют» должен был стать аппарат «Скиф-Стилет». Приставка «Стилет» появилась в названии потому, что на нем собирались установить разработанный в НПО «Астрофизика» бортовой специальный комплекс (БСК) 1К11 «Стилет». Он представлял собой модификацию «десятиствольной» наземной установки инфракрасных лазеров с одноименным названием, работающих на длине волны 1.06 нм. Наземный «Стилет» предназначался для вывода из строя прицелов и датчиков оптических устройств. В условиях космического вакуума радиус действия лучей можно было значительно увеличить. «Космический стилет» в принципе успешно можно было применять как противоспутниковое средство. Как известно, вывод из строя оптических датчиков космического аппарата равносилен его гибели. Что стало с этим проектом - неизвестно.

Не так давно в беседе с журналистами начальник Генштаба Вооруженных сил РФ Николай Макаров заявил о том, что в России, «как и во всем мире, ведутся работы по боевому лазеру». Добавив при этом: «Говорить о его характеристиках пока преждевременно». Может быть он говорил о развитии именно этого проекта.

По данным «Википедии», судьба наземного «Стилета» также очень печальна. По некоторым данным, ни один из двух принятых на вооружение экземпляров в настоящий момент не действует, хотя формально «Стилет» до сих пор состоит на вооружении Российской армии.


Лазерный комплекс «Стилет» на государственных испытаниях







Фотографии одного из комплексов «Стилет», 2010 год, Харьковский танковый ремонтный завод №171

Некоторые эксперты считают, что во время парада 9 мая 2005 года Россия продемонстрировала лазерные пушки, причем не «прототипы», а серийные машины. Шесть боевых машин со снятыми «боевыми блоками» и «оконечными устройства» стояли по обе стороны Красной площади. По мнению экспертов, это и были те самые «лазерные пушки», тут же окрещенные остряками «гиперболоидом Путина».

Кроме этой амбициозной демонстрации и публикаций о «Стилете», каких-либо более подробных данных о российском лазерном оружии в открытой печати нет.

Электронный справочник министерства обороны РФ «Оружие России» сообщает: «Перспективы создания боевого лазерного оружия в России эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Это обусловлено, в первую очередь, бурным развитием современных технологий, расширением области использования лазерных средств для других целей, стремлением создать такое оружие и теми преимуществами, которыми оно обладает в сравнении с традиционными средствами поражения. По некоторым оценкам реальное появление боевого лазерного оружия возможно в период 2015-2020 годы».

Возникает резонный вопрос: как же обстоят дела по этому вопросу у нашего потенциального заокеанского противника США?
Например, генерал-полковник Леонид Ивашов, президент Академии геополитических проблем, дает на этот вопрос такой ответ:

Для нас опасность представляют мощные химические лазеры, размещаемые на самолетах «Боинг-747» и космических платформах. Кстати, это лазеры советских разработок, переданные в начале 90-х годов по распоряжению Б. Ельцина американцам!

И действительно, не так давно в американской прессе появилось официальное заявление Пентагона о том, что испытания боевой лазерной установки для борьбы с баллистическими ракетами, предназначенной для размещения на авиационных носителях, прошли успешно. Также стало известно, что Агентство по противоракетной обороне США получило у конгресса финансирование программы испытаний на 2011 год в размере одного миллиарда долларов.

По замыслам американских военных, самолеты, оснащенные лазерными комплексами, будут действовать в основном против ракет средней дальности, хотя более вероятно, что лишь против оперативно-тактических. Поражающее действие данного лазера даже при идеальных условиях ограничено 320-350 км. Получается, чтобы сбить баллистическую ракету на стадии разгона, самолет с лазером должен находиться в радиусе 100-200 км. от расположения ракетных установок. Но позиционные районы межконтинентальных баллистических ракет расположены, как правило, в глубине территории страны, и, если самолет ненароком там окажется, то не возникает никаких сомнений, что он будет уничтожен. Поэтому принятие США на вооружение лазера воздушного базирования позволит им лишь воспрепятствовать угрозам от стран, освоивших ракетные технологии, но не имеющих полноценной противовоздушной обороны.

Конечно, со временем Пентагон может вывести лазеры и в космос. И Россия должна быть готова к ответным мерам.

Сегодня не существует лазеров боевого назначения, кроме американской ALTB (военной лаборатории с прототипом такого оружия на борту). Все остальное - только НИОКР.

Лазерное оружие (так называемые «лучи смерти») будоражит воображение как обывателей, так и ученых. В последнее время СМИ наполнились информацией о разработках в разных странах этого Есть сообщения и о проведении практических опытов с ним. Что это вообще такое и какова на самом деле ситуация в этой сфере сегодня?

Основано на использовании высокоэнергетического электромагнитного направленного излучения, которое генерируется разного рода лазерами. Действие его определяется ударно-импульсным и термомеханическим воздействием, способным привести к механическому разрушению поражаемого объекта, а также временному ослеплению человека. Если работа производится в импульсном режиме, при большой плотности энергии, тогда тепловое воздействие сопровождается ударным.

Лазерное оружие по принципу действия делится на ослепляющее, прожигающее, перегревающее, электро-магнитно-импульсное и проекционное (проектируют картины на облака, что способно деморализовать неподготовленного противника).

В настоящее время наиболее приемлемыми для применения считаются лазеры химические, рентгеновские с ядерной накачкой, твердотельные и со свободными электронами.

В последнее десятилетие лазерное оружие совершенствуется особенно быстрыми темпами. Это связано с переходом от накачки его активных элементов ламповым способом к энергетическому с помощью Возможность генерирования излучения с разными длинами волн дает возможность использовать его и для силового воздействия на цель, и для передачи информации.

Сейчас проводятся работы по созданию рентгеновских которых в 100-10000 раз больше энергии лазеров оптического диапазона. Оно способно проникать даже сквозь большие толщи разных материалов. поражает цель путем импульсного ударного воздействия, которое приводит к испарению материала поверхности целей.

Лазерное оружие характеризуется скрытностью применения (нет дыма, пламени, звука), высокой точностью, его действие практически мгновенное, сопоставимое со Но поражающее действие его зависит от прозрачности атмосферы, поэтому в сложных метеоусловиях (туман, снегопад, дождь, задымленность и т.д.) оно снижается.

Что представляет собой лазерное оружие России? Николай Макаров, начальник Генштаба Вооруженных сил РФ, заявил, что в России, как и в мире, идут работы по боевому лазеру. Затем добавил, что «говорить о его характеристиках преждевременно».

Таким образом, перспективное оружие России пока напрямую не связано с лазером. Так утверждают официальные источники. Хотя РФ и была первой страной, достигшей в данно области заметных результатов. Она начала заниматься разработками в сфере тактического оружия раньше Штатов и имеет опытные образцы высокоточных химических боевых лазеров.

С учетом необходимости противодействия новым видам угроз, где традиционные системы вооружений и военной техники (ВВТ) оказываются все менее эффективными, военные возлагают все больше надежд на использование боевых лазеров. В этой связи представляет интерес современное состояние и перспективы создания эффективных образцов этого оружия, использующего в качестве поражающего средства лазерный луч, его реальные сильные и слабые стороны.

Могут ли лазеры заменить существующие традиционные виды вооружений и когда это может произойти – пока сказать сложно. Вместе с тем, с учетом стремительного роста этого научного направления, можно говорить о реальных достижениях в этой области, разработке и испытаниях реальных технологических демонстраторов будущих боевых лазеров.

Первые реальные научные исследования в отношении возможности военного применения лазеров начали проводить в США и СССР в середине 50-х гг ХХ века. Тогда же ученые начали первые эксперименты с принципиально новым перспективным, по мнению военных, направлением видом «супероружия». В США при этом использовали газовые лазеры, где в качестве рабочего тела использовался углекислый газ. Однако в связи с рассеиванием пучка излучения и низкими коэффициентами конверсии энергии использовать лазер в качестве оружия использование лазера в качестве оружия исключалось.

Преодолеть указанные трудности удалось только к середине 70-х гг. благодаря созданию химического газового лазера с рабочим телом в виде оксида йода или оксида дейтерия. Это ускорило процесс исследований и стало ключевым элементом при создании в ВВС США специальной системы под наименованием YAL-1.

Во времена президентства Рональда Рейгана она служила в качестве одного из элементов широко известной программы Стратегической Оборонной Инициативы (СОИ), объявленной 23 марта 1983 года с целью создания научно-технического задела для разработки широкомасштабной системы ПРО с элементами космического базирования. Эта программа также известна как «звездные войны». В ходе испытаний удалось перехватить и уничтожить несколько БПЛА и ракет, в т.ч. БР и даже ракет класса «воздух-воздух» AIM-9 Sidewinder.

Правда, некоторые источники скептически оценивали эти успехи, тем более, что вскоре программу закрыли. Но несмотря на официаьное закрытие, результаты экспериментов оказались востребованы и дали толчок более масштабным исследованиям в области лазерной техники. Прежде всего, это касалось поиска путей создания эффективных систем ПВО-ПРО с возможностью гарантированного перехвата атакующих ракет.

В 1978 году в рамках Объединенной программы ВМС США состоялись испытания, в ходе которых химический лазер, наводившийся на цель системой Hughes Navy Pointer / Tracker , успешно перехватил в полете и уничтожил противотанковую управляемую ракету TOW , a лазер MIRACL ( Mid Infrared Advanced Chemic а l Laser ) – воздушную цель-мишень BQM -34 Vandal . Это был настоящий успех .

Эксперименты с улучшенным химическим лазером инфракрасного диапазона MIRACL показали возможность создания лазера на флюориде дейтерия, способного развить мощность до 1 мВт в течение 70 сек. Более поздняя версия лазера имела выходную мощность до 2,2 мВт и на испытаниях в 1985 г. успешно разрушила на статических испытаниях БР, находившуюся в 1 км от лазерной пушки.

Наряду с этим, были сделаны и другие качественные открытия. В середине 70-х гг. начали появляться технологии лазеров на свободных электронах FEL (Free Electron Laser) с ускорением электронов практически до скорости света с последующим преобразованием энергии в переменном магнитном поле. Эта технология позволила выбирать для высокоэнергетических лазеров наиболее оптимальную длину волны в зависимости от условий среды распространения.

Сегодня в большинстве исследований в США используют высокоэнергетический лазер очень большой мощности HEL (High Energy Laser). Несмотря на то, что он уступает в мощности своим химическим/газовым аналогам и имеет худшие условия распространения лазерного излучения в различных средах, он более практичен для нормальной работы. Так, HEL требуется наличие только эффективного силового агрегата и системы охлаждения. Это как раз те условия, которые целиком устраивают военных.

Интенсивные исследования потенциальных возможностей боевых лазеров вновь активизировались в начале ХХІ столетия . В свою очередь, повышенный интерес к новому виду оружия обусловил довольно динамичное развитие и исследования в различных областях физики, химии, математики, электроники, механики и высокоэффективных источников энергии.

Существенное влияние на это оказали и геополитические изменения (международный кризис, локальные войны, политическая нестабильность во многих регионах мира), возникновение новых видов угроз (терроризм, гибридная война), быстрое развитие новых военных технологий (беспилотные системы, высокоточное оперативно-тактическое оружие, системы разведки, управления и передачи данны, а также РЭБ).

К этому можно добавить также понимание того, что традиционные системы, основанные на химических источниках энергии (порох, ракетное топливо) достигли предела своей эффективности и больше не имеют резервов для дальнейшего развития и совершенства.

Главным достижением от использования новейших технологий стало существенное увеличение точности и когерентности пучка лазерного излучения. С одной стороны, это связано с необходимостью поражения малых и маневренных воздушных целей (БПЛА, артиллерийские снаряды, минометные мины), имеющих широкий диапазон скоростей, а с другой – с необходимостью перехвата и быстрой выдачи данных для стрельбы. Причем этот процесс занимает намного меньше времени и является намного более сложным, чем традиционных системах ВВТ.

Качественно новое оружие потребовало и определения соответствующих требований. Лазерное излучение имеет принципиальные отличия от обычного света и вырабатывается в рамках упорядоченного процесса принудительной эмисии. Лазер излучает когерентный монохроматичный свет в виде параллельного пучка направленной энергии. Лазерное излучение распространяется со скоростью фотонов (расстояние в 100 км преодолевает за 1/3 тыс доли секунды), что в 24 000 ÷25 000 раз превышает скорость современных ракет и является убедительным аргументом в пользу развития боевых лазеров.

Когерентность генерируемого лазерного света представляет собой пространственно-временное упорядочение составляющих его электро-магнитных осцилляций и является важнейшим преимуществом лазера. Считается, что средняя величина энергии излучения, необходимой для испарения 1 cм 3 материала, должна составлять порядка 100÷200 кДж. Вместе с тем, если принять, что для уничтожения цели достаточным будет ограничиться инициацией разогрева ее наиболее уязвимых элементов, затраты будут меньше примерно в 5 раз для стали и до 23 – для олова. Для легковоспламеняющихся материалов и оптических приспособлений затраты будут еще ниже.

В этой связи, современная философия применения лазерного оружия предполагает не полное уничтожение потенциальной цели, а на поражении ее наиболее уязвимых и чувствительных элементов (топливо, оптоэлектронный блок, система управления и т.п.). Уничтожение или повреждение последних должно повлечь за собой повреждение или уничтожение цели .

Создание лазерного пучка большой плотности на больших дистанциях требует наличия длиннофокусных и соответственно, быстрозаменяемых оптических систем либо очень эффективных систем охлаждения линз и зеркал. Минимальный диаметр пучка излучения, по оценкам ученых, должен быть не менее 100 мм, в то время, как время реакции – не более 6 секунд (для систем типа C-RAM соответственно, 60 мм и до 20 секунд). При этом в процессе распространения в атмосфере лазерный луч (пучок) находится под сильным воздействием различных внешних факторов, как кратко- так и долговременных. К тому же, в условиях атмосферы излучение теряет часть мощности вследствие процессов рассеивания и поглощения.

К тому же, остаются нерешенными и некоторые технические проблемы, например, в части наведения на цель. Так, для выделения на поверхности потенциальной цели условной точки (пятна) диаметром 80 мм и одновременного сохранения неизменности положения лазерного пучка в пространстве в пределах 20÷30 мм в период освежения, равный 1 мс (для цели, удаленной на 5000 м и двигающейся со скоростью 10 км/сек), требуется точность наведения лазерной пушки в пределах нескольких микрорадиан. Для этого требуются высокоточные системы обнаружения целей и наведения. В этой связи направление пучка лазерного излучения на заданную цель и удержание в пределах определенных параметров составляет сегодня одну из основных проблем, требующих решения.

Большая мощность лазерного импульса позволяет сократить время уничтожения цели и снизить затраты на нагревание атмосферы. Последнее связано с созданием лазерным пучком пути в условиях низкой видимости, дымки, облачности и т.п.

Благодаря уникальным свойствам, лазерное оружие рассматривается военными в качестве универсального, способного решаль широкий круг задач как оборонительного, так и наступательного характера. При этом оно может применяться в различных средах и боевых условиях.

Лазерные системы не имеют отдачи при выстреле, в отличие от традиционных систем оружия. Его отличает универсальность по целям, которые могут поражаться в очень короткие промежутки времени, а также гибкость в применении (т.е. помимо уничтожения возможна нейтрализация цели путем вывода из строя или «ослепления» ее электроники) . Наконец, лазерное оружие не лимитировано наличием боеприпасов (заодно исключаются вопросы их производства, доставки и хранения). Работоспособность системы в этом плане ограничивается только наличием источника энергии и системы охлаждения.

От тактических лазерных систем требуется высокая мобильность, эффективная дальность поражения цели не менее 3000 м, высокие характеристики по обнаружению и сопровождению маневренных воздушных целей плюс возможность выполнения как минимум, 25-50 лазерных выстрелов в ходе одной миссии.

В частности, от разрабатываемой системы ПВО-ПРО типа VSHORAD (Германия), основанной на использовании боевых лазеров, требуется поражать цели на дистанциях от 1500-6000 м. Однако в настоящее время как раз этот параметр – возможная эффективная дальность поражения целей – и является ограничением. Другим недостатком или слабым местом является уязвимость оптического блока лазера от загрязнения или коррозии.

Представляют интерес также взгляды военных и ученых на направления дальнейших исследований и потенциальных направлений использования боевых лазеров. Например, тактическое применение лазера типа THEL в настоящее время рассматривается прежде всего для поражения всего спектра целей типа C-RAMM (Counter Rocket, Artillery, Mortar , Missile) – ракет, артиллерийских и минометных снарядов, баллистических ракет, а также относительно тихоходных воздушных целей.

Разработка таких систем ведется сегодня сразу в нескольких странах, в т.ч. в США, Германии и Израиле. Речь идет о создании химического лазера на фториде дейтерия в стационарной и мобильной версиях. Предварительные испытания дали позитивные результаты по перехвату и уничтожению, например, минометных мин. Правда, пока не удается повысить скорострельность системы.

Несколько иную задачу решали американские концерны Boeing i Northrop Grumman, работавшие в рамках программы создания технологического демонстратора высокоэнергетического лазера HEL TD (High Energy Laser Technology Demonstrator). В марте 2017 г. демонстратор мобильной лазерной системы, смотированной на базе стандартного армейского грузовика HEMTT, передали для проведения всесторонних испытаний в реальных условиях.

Назначение системы HEL TD – поражение целей типа C-RAMM, БПЛА, а также мин заграждения, взрывоопасных предметов и импровизированных взрывных устройств (UXO/C-IED), систем разведки и передачи данных, атакующих крылатых ракет или артиллерийских снарядов на безопасном расстоянии. Иначе говоря, новая система должна быть максимально универсальной наряду с низкими эксплуатационными затратами.

Уже первые испытания показали возможность развития лазером мощности до 58кВт за счет объединения в одном пучке нескольких отдельных лазерных лучей.

Демонстратор лазерной боевой системы LSD (Laser Weapon System Demonstrator) стал развитием программы по созданию прототипа боевого лазера для ВМС США MLD (Martime Laser Demonstration), реализованной концерном Northrop Grumman на базе твердотельного лазера. Исследовательская программа состоит из трех этапов и предусматривает создание боевого лазера мощностью 150 кВт, с обеспечением его электроэнергией от стандартной бортовой сети корабля. Первый контракт на выполнение работ предусматривает финансирование в объеме 125 млн долларов, сроком на 34 месяца.

В числе других программ следует отметить JHPSSL (Joint High Power Solid State Laser), предусматривающую создание наземных и морских версий 100-кВт твердотельных боевых лазеров с электрическим питанием, а также боевую систему Laser Weapon System (LaWS), т.е. лазер мощностью 30 кВт класса AN/SEQ-3 (XN-1). Последний в 2017 г. успешно прошел испытания на борту десантного корабля-дока ВМС США USS «Ponce», во время которых успешно поразил воздушную и морскую цели. Известно о планах начала серийного производства таких лазеров в США, начиная с 2020 года.

По оценкам специалистов, новое оружие отличается высокой надежностью и эффективностью, намного превысив все ожидания. Результаты данных испытаний и практический опыт эксплуатации лазерного оружия будут положены в основу очередной американской программы исследований в области твердотельных лазеров Solid State Laser Technology Maturation (SSL-TM).

Наряду с указанными разработками, в США продолжаются также исследования в части адаптации лазерного оружия к потребностям боевой авиации. Так, исследовательская лаборатория ВВС США активно работает сегодня над созданием передовой системы самообороны боевых летательных аппаратов, основанной на лазерных системах. Речь идет о создании технологического демонстратора высокоэнергетического лазера самообороны SHIELD (Self Protect High Energy Laser Demonstrator), задачей которого станет уничтожение атакующих ракет класса «воздух-воздух».

SHIELD можно рассматривать в качестве первой в своем роде активной системы самообороны самолетов, как боевых, так и транспортных в зоне боевых действий. Первая фаза проекта предусматривает создание уже в 2019 году устройства, основанного на использовании лазера средней мощности. Вторая фаза (2021 г.) предусматривает создание передовой системы уже на базе лазера большой мощности с возможностью использования его не только для обороны, но также и для наступательных действий.

На первом этапе, кроме химического/газового лазера, также рассматривается возможность использования лазера на свободных электронах. Одним из основных вопросов в проекте будет создание высокоэффективного и высокопродуктивного источника энергии на борту самолета для питания лазера во время полета. При этом необходимо будет совратить его массу и размеры, интегрировав с остальными бортовыми системами управления и передачи данных.

Высокоэнергетические твердотельные лазеры SSHEL ( Solid State High Energy Laser ) обладают намного лучшими характеристиками, чем их химические аналоги, но в то же время, их стоимость намного выше . Поэтому развитие этого направления требует использования технологий глубокой миниатюризации элементов. В этой связи часть экспертов полагает, что конечный результат может и не оправдать высоких затрат. вартість.

Лазерная система ПВО самообороны LADS (Laser Area Defense System), разработана концерном Raytheon для замены существующего артиллерийского комплекса ПВО самообороны CIWS Phalanx. LADS должна обеспечить более высокую универсальность применения системы против более широкого спектра угроз, иметь более высокую дальность действия. Его преимуществом будет отсутствие необходимости резервировать место и объемы для хранения боекомплекта, который в силу специфики лазеров будет неограниченным.

Одним из мировых разработчиков лазерного оружия является Китай. По оценкам американских экспертов, высокоэнергетическими системами в КНР занимаются до 30% из 10000 институтов и организаций.

В 2015 г. китайская компания «Цзююань» провела первые успешные испытания лазерной системы перехвата маловысотных воздушных целей. Известно, что система способна в течение 5 сек. обнаружить и уничтожить малозаметную подвижную цель, имеющую скорость до 50 км/час на высотах до 500 м. Дальность действия системы составляет 2 км (в пределах радиуса действия сверхмалых БПЛА).

В начале 2017 г. сообщалось о создании в Китае самого мощного в мире ультрафиолетового лазера на свободных электронах DCLS , работающего в «вакуумной» части ультрафиолетового диапазона .

Тогда же сообщалось и о создании в Китае мобильного наземного лазерного комплекса «Silent Hunter», использующего лазер мощностью от 30 до 100 кВт. Максимальная дальность действия составляет 4000 м. На базе этого лазера создается более мощная версия для перехвата ракет.

Наряду с этим, известно о разработке в Китае вариантов лазерного стрелкового оружия, в т.ч. нелетального действия.

В России испытаны лазерные системы воздушного и наземного базирования (программа А-60) в интересах ПВО-ПРО, но все работы засекречены. Российский концерн «Алмаз-Антей» работает над созданием мобильного боевого лазера на базе газодинамического аналога на углекислом газе. Боевой лазер будет смонтирован на колесной платформе.

В свою очередь, немецкий концерн Rheinmetall уже несколько лет разрабатывает стационарный и мобильный (на колесном шасси) варианты высокоэнергетического лазерного оружия HELS (High Energy Laser System) мощностью от 5 до 50 кВт. Особенностью разработки является широкое использование коммерческих волоконно-оптических источников лазерного излучения и технологии наложения пучков BST (Beam Superimposing Technology).

В настоящее время используются волоконно-оптические источники лазерного излучения, работающие в инфра-красном диапазоне на частотах 1060 – 1080 нм и сочетают в себе высокую мощность, качество пуска и надежность. Генерируемая энергия здесь передается на оптический резонатор и блок сопровождения цели посредством световода. Лазерный пучок формируется блоками BFU. Система предназначена прежде всего для борьбы с БПЛА, вертолетами, другими воздушными целями, в т.ч. типа C-RAMM и управляемыми противотанковыми ракетами.

Продолжаются исследования в части возможности использования системы HEL на боевых кораблях. Кроме названных выше, здесь предполагается поражать также скоростные надводные цели, прежде всего, катера пиратов и контрабандистов. Такой волоконно-оптический лазер мощностью в 10 кВт был успешно испытан на одном из кораблей ВМС, поразив намеченную учебную цель диаметом до 20 мм на дальности в 1000 м. А лазер мощностью в 30 кВт уничтожил цель на дальности свыше 3000 м.

Один из демонстраторов был установлен на колесном БТР GTK Boxer, с питанием электроэнергией от стандартной сети этой машины. Запаса энергии хватает на 1000 выстрелов с 2-3 паузами, что соответствует 30-минутной непрерывной стрельбе обычных систем. После этого аккумуляторы машины нуждаются в подзарядке.

Преимуществом системы HELS является универсальность и модульность конструкции, что позволяет интегрировать ее с различными платформами или системами ВиВТ. В свою очередь, планируется постепенное создание системы суммарной мощностью в 80 кВт (фактически это будут 4 объединенных между собой лазера мощностью по 20 кВт). Также предполагается довести стоимость одного выстрела до 1 євро.

Наряду с этим, совершенствуется система обнаружения и анализа данных, уменьшаются эксплуатационные затраты, обеспечивается парктически бесшумная работа системы и ее высокая скрытность от всех видов существующих на сегодня технических средств разведки (исключая сам момент выстрела).

Немецкая компания MBDA Deutschland также осуществляет испытания варианта боевого лазера вместе с автоматическим, независимым сенсором сопровождения цели и передачи данных. Сенсор будет преобразовывать первичные приблизительные данные о положении и элементах движения цели в точные.

Исследования, начатые в 2008 году на химическом/газовом лазере, в дальнейшем продолжили уже на оптико-волоконном аналоге. В ходе испытаний прежние линзы заменили на зеркальные системы, исходя из их технического совершенства и большего соответствия для применения в лазерных системах мощностью в 100 – 150 кВт. Данная система смонтирована на 20-футовом контейнере вместе с лазерной головкой кругового обзора. Сервоприводы управления лазерами и зеркалами формируют единый пучок излучения, наводимый на цель. Назначением такой лазерной пушки является уничтожение малых, скоростных и маневренных целей. В дальнейшем предполагается работать в направлении снижения размеров системы и увеличения мощности излучения.

Британский консорциум Dragonfire firm вместе с МBDA UK также проводит проектно-исследовательские разработки и испытания высокоэнергетических лазеров. На эти цели МО Великобритании выделило 30 млн фунтов стерлингов. Завершение создания технологического демонстратора ожидается в 2018 году с тем, чтобы в 2019 году провести полный цикл испытаний. Новая система предназначена для использования в наземных войсках и на флоте.

Силы обороны Израиля планируют принять на вооружение лазерную боевую систему Iron Beam, разработанную концерном Rafael и предназначенную для уничтожения целей типа C-RAMM. Комплекс включает два твердотельных лазера, РЛС и пост управления.

Собственную разработку в области высокоэнергетических лазеров — Yüksek Güçlü Lazer Silah Sistemi (YGLSS) – осуществляет турецкая фирма SAVAG совместно с концерном ASELSAN и университетом Bilkent (Анкара).

Система успешно прошла первые лабораторные испытания и принципиально подтвердила возможность применения ее для поражения движущихся целей. В дальнейшем предполагается закупить за рубежем прототип боевого лазера и интегрировать его с турецкими ВиВТ. После этого прототип будет заменен на отечественный аналог, производство которого должно занять до 2-х лет.

С 2011 г. собственные разработкт в области создания боевых лазеров начала также Индия. Там уже создана экспериментальная установка, которая в 2017 г. начала прохождение первых испытаний. В настоящее время удалось достичь дальности действия до 800 м., что считается явно недостаточным для реальных условий.

Созданию лазерного оружия должны также соответствовать экономические предпосылки. Так, стоимость существующих сегодня традиционных ВВТ можно оценить на основе методов экономического анализа. Так, стоимость самолета –истребителя на рынке вооружений составляет в среднем 60÷80 млн USD, крилатой ракеты — 2 млн USD, a БПЛА класса микро или мини — от 200 тыс до 1 млн USD (в зависимости от категории и оснащения). Стоимость артиллерийских систем колеблется от 1000 до нескольких сот тысяч USD.

С другой стороны, современные системы борьбы с ними, например, снаряд PAC-3, стоит даже 6 млн USD, стоимость ракеты Tamir израильского комплекса ПРО Iron Dome оценивается примерно от 30 до 50 тыс USD, a один залп системы самообороны, основанной на 35-мм орудиях с современными боеприпасами типа AHEAD стоит около 20 тыс USD (в случае уничтожения целей типа C-RAM стоимость возрастает до 70 тыс. USD).

В то же время, стоимость одного выстрела лазерной пушки, установленной на американском корабле-доке USS «Ponce», сосатвляет менее одного доллара!

На исследования, разработку и испытания лазерной системы LaWS (Laser Weapon System) ВМС США израсходовали до 40 млн USD. Это относитеьно небольшая сумма в сравнении с аналогичными разработками в сфере традиционных ВВТ. Также стоит отметить, что в процессе разработки лазерной техники широко используются уже апробированные коммерческие решения и технологии гражданского рынка.

Таким образом, на основании изложенного можно сделать следующие выводы.

Боевые лазерные системы сегодня все еще пребывают в состоянии развития. Но уже первые испытания на практике показали высокую эффективность и соответствие потребностям вооруженных сил. В то же время, для повышения эффективности применения лазеров в военном деле следует решить целый ряд не только технологических вопросов (освоение новых технологий), но и разработать концепцию исполльзования этого нового вида оружия. Предстоит разработать также тактику использования боевых лазеров, определить условия эксплуатации и меры безопасности. Быстрое развитие технологий дает все основания полагать, что процесс совершенствования нового оружия будет осуществляться достаточно быстро.

С другой стороны, хотя в отдаленной перспективе новое оружие пока не заменит большинство из существующих сегодня видов ВВТ, уже понятно, что оно придает войскам не только совершенно новые уникальные боевые возможности, но и значительно повышает возможности существующих видов вооружений.

В частности, в экспертном сообществе полагают, что лазерное оружие будет играть исключительно важную роль прежде всего в качестве средства ПВО-ПРО, эффективно дополняя существующие традиционные системы.

В то же время, как оказалось, лазеры пока не в состоянии поражать скоростные воздушные цели (7М), крылатые ракеты с малой ЭПР и малозаметные для РЛС. К тому же, некоторые современные конструктивные материалы, такие, как композиты на углеродной основе, малоуязвимы для лазерного излучения. В таком случае вся надежда возлагается на разогрев лазерами внутренностей ракеты в надежде вывести ее из строя. Однако такое решение потребует еще больших затрат энергии и/или увеличения времени лазерного освежения цели.

Владимир Заблоцкий ,

эксперт ИКК Defense Express

Об использовании лазеров в военной сфере говорят уже не первое десятилетие, однако сейчас речь идет о внедрении первого настоящего оружия такого типа. Так, почему же на разработку эффективного лазерного вооружения потребовалось столько времени? Первая причина касается источника питания для такого оружия, подбор которого представляет собой серьезную инженерную проблему.

Журнал Navy on Monday сообщил о разработке новых оборонных планов для кораблей, которые в настоящий момент развернуты в Персидском заливе. На одном из них в частности будет установлено лазерное оружие. Об использовании лазеров в военной сфере говорят уже не первое десятилетие, однако сейчас речь идет о внедрении первого настоящего оружия такого типа. Так, почему же на разработку эффективного лазерного вооружения потребовалось столько времени?

Первая причина касается источника питания для такого оружия, подбор которого представляет собой серьезную инженерную проблему. Лежащая в основе лазерного вооружения теория предельно проста: задача состоит в уничтожении цели с помощью концентрированного луча электромагнитной энергии.

Обычное оружие работает примерно таким же образом: ружейная пуля — это всего лишь более материальный способ доставки смертельного объема энергии.

Эта концепция настолько проста, что люди по-разному вертят этой идеей на протяжение тысячелетий. Легенда гласит, что во время осады Сиракуз Архимед смог поджечь паруса вражеских кораблей с помощью солнечных лучей.

Лучи инопланетян из «Войны миров» Герберта Уэллса — это фантастическое оружие, которое тоже опирается на принцип энергетических лучей. Как и уничтожившая планету Альдераан «Звезда смерти» из «Звездных войн». Специалисты по оборонным системам начали говорить о лазерном вооружении еще с конца 1970-х годов. Тем не менее, создание эффективного лазерного оружия сопряжено с целым рядом серьезных технических проблем.

Первый и самый важный вопрос — это источник энергии. Даже в лучших моделях лазер использует лишь 20% идущего на питание оружия электричества. Нацеливание и фокусировка лазерного луча требует еще больше энергии. В связи с таким перерасходом на работу лазера мощностью в 20 киловатт, который способен уничтожить или серьезно повредить небольшое судно, требуются сотни киловатт электроэнергии. (Для сравнения: обычный оконный кондиционер потребляет 1 киловатт). Вот почему это новое оружие установлено на боевом корабле, где электричества более чем достаточно.

Даже если у нас когда-нибудь откроют миниатюрный источник питания, который сможет эффективно обеспечить энергией лазер, мы не сможем создать портативное лазерное оружие. Дело в том, что типичная лазерная установка на самом деле испускает три луча.

Первый луч служит для измерения атмосферного искажения. Далее специальный компьютер рассчитывает то, как нужно изменить луч, чтобы приспособить его к текущим условиям. Второй луч нужен для отслеживания цели. Несмотря на то, что часто пишут в научной фантастике, лазер должен быть сфокусирован на цели в течение нескольких секунд, чтобы нанести ей серьезные повреждения. Таким образом, второй луч позволяет удержать в фокусе движущуюся цель. Третий луч представляет собой настоящую энергетическую волну и имеет примерно метр в диаметре. Лазер обычно быстро нагревается, в связи с чем установка оборудована системой охлаждения.

Второе серьезное препятствие касается сложностей с развертыванием лазерного оружия на поле боя. Такое вооружение должно быть не просто возможным с технической точки зрения, а обладать лучшими качествами и меньшей ценой, чем уже существующее. Поэтому в армии предпочли использовать первые образцы лазерного оружия в четко определенных нишах, а не создавать под него отдельный род войск.

В настоящий момент наиболее эффективным образцом является тактический высокоэнергетический лазер (Tactical High Energy Laser), который обладает достаточной мощностью для уничтожения небольших предметов, например летящих минометных снарядов. У флота имеется другая проблема с маленькими целями. Дело в том, что попасть по небольшим и маневренным судам из обычного оружия — непростая задача. Тактическому лазеру в свою очередь достаточно всего на несколько секунд сфокусироваться на приближающемся корабле, чтобы взорвать его топливные баки или повредить двигатель. Это позволит избежать повторения нападения смертников на USS Cole в 2000 году.

Но что ощущает цель, на которую обращено лазерное оружие? Она нагревается. Лазер несет в себе энергию. Мощный лазер чрезвычайно быстро нагревает поверхность вашей кожи и находящиеся под ней клетки. Это, безусловно, чрезвычайно болезненный опыт, и любой, кто слишком долго останется под лучом лазера в 20 киловатт, неизбежно погибнет.

Тем не менее, военные вряд ли начнут использовать лазеры против людей в обозримом будущем. Дело в том, что они не просто громоздки: чтобы убить, им требуется немало времени. Если вы почувствуете на себе лазер, для защиты вам достаточно спрятаться за любым непрозрачным объектом. Тем не менее, в армии рассматривают создание оружия с использованием микроволновых технологий для рассеивания толпы: при воздействии подобного жара люди обычно обращаются в бегство. В любом случае, пули еще долго останутся куда более эффективным способом ранить или убить человека, чем любой лазер.



Наша первая подборка материалов под рубрикой «Оружие будущего», посвященная боевым роботам, вызвала немалый интерес у читателей, о чем свидетельствуют письма в редакцию. В них они просят продолжить публикации о современных и разрабатываемых за рубежом видах вооружений. Выполняя эту просьбу, мы посвящаем очередную подборку боевым лазерам. Напомним, что в опубликованном журналом New Scientist рейтинге наиболее многообещающих систем оружия они занимают второе место.

«Лучи смерти» Архимеда

«Когда Марцелл убрал корабли на расстояние, превышающее полет стрелы, старик соорудил особое шестиугольное зеркало; на расстоянии, пропорциональном размеру зеркала, он расположил похожие четырехугольные зеркала, которые можно было перемещать с помощью специальных рычагов и шарниров. Зеркало он обратил к полуденному солнцу - зимнему или летнему - и, когда пучки лучей отразились в нем, огромное пламя вспыхнуло на кораблях и с расстояния полета стрелы превратило их в пепел».
Это по сути первое упоминание о «лучах смерти», которые следует, наверное, считать прообразом лазерного оружия. Они, согласно дошедшим до нас легендам, были изобретены Архимедом в III веке до нашей эры и применены при обороне Сиракуз от осаждавших город римских войск. Кстати, на рис. 1 показано, как итальянский художник Джулио Париджи (1571 – 1635) представлял действие этого оптического оружия. На протяжении последующих двух тысячелетий шли споры о возможности превращения света в оружие, спорадически провоцируемые писателями-фантастами. Наиболее известными из них стали романы «Война миров» Герберта Уэллса и «Гиперболоид инженера Гарина» Алексея Толстого. В первом напавшие на Землю пришельцы были оснащены оружием, в котором в качестве поражающего фактора служили неизвестно каким образом создаваемые тепловые лучи. Во втором автор даже описал конструкцию и принцип действия своего оружия. В качестве источника энергии в гиперболоиде использовались некие термитные свечи, а система зеркал фокусировала тепловой луч. В результате получался «…узкий, как игла, луч, срезающий трубы огромных заводов, режущий, как раскаленный нож, броню линкоров...».
На практике же никак не удавалось создать устойчивый луч при помощи традиционных источников и систем. Лишь изобретение в 1954–1955 годы советскими учеными Николаем Басовым и Александром Прохоровым одновременно с американцем Чарльзом Таунсом оптического квантового генератора сдвинуло процесс с мертвой точки. В результате был получен первый лазер (LASER - «Light Amplification by Stimulated Emission of Radiation», что означает «усиление света в результате вынужденного излучения»). По формулировке Николая Басова, «лазер – это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля – лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва».
Ныне уже существует множество конструкций лазеров. С некоторыми из них мы часто встречаемся в повседневной жизни. Например, с полупроводниковыми (лазерная указка и считывающая головка в CD- и DVD-проигрывателях), газовыми (школьный гелий-неоновый и технологический на углекислом газе, который режет металл) и другими. В военной же сфере успехи не столь разительны, хотя, учитывая свойства лазеров, нетрудно предположить, что у боевых лазерных систем большое будущее. Во-первых, лазерный луч достигает цели со скоростью света - 300 тыс. км в секунду. Во-вторых, лазерное оружие не зависит от земного притяжения: как известно, пули и снаряды летят по параболе, обусловленной гравитацией. В-третьих, лазерное оружие обладает невероятной точностью. К примеру, пройдя расстояние до Луны (380 тыс. км), диаметр луча разойдется всего на 1,5 километра. В-четвертых, лазерное оружие может полностью уничтожать атакуемые объекты или только повреждать их.
Поражающее действие лазерного луча достигается в результате нагревания до высоких температур материалов цели, что приводит к разрушению объекта, повреждению чувствительных элементов вооружения, ослеплению органов зрения человека, вплоть до необратимых последствий, нанесению ему термических ожогов кожи. Для противника действие лазерного излучения отличается внезапностью, скрытностью, отсутствием внешних признаков, высокой точностью, практически мгновенным действием. Правда, есть и серьезные проблемы боевого применения лазеров. Это прежде всего необходимость подключения лазерной пушки к мощному источнику электроэнергии. Для проведения одного «выстрела» требуется не менее 100 кВт. Эффективность лазерного оружия снижают туман, дождь, снегопад, задымленность и запыленность атмосферы.
Твердотельные, химические, жидкостные…
Как считается, создание лазерного оружия можно сравнить с рождением ядерной бомбы. И та страна, которая решит эту сложнейшую научно-техническую проблему первой, получит возможность диктовать свои условия мировому сообществу. Поэтому работы в этой области особо не афишируются. Тем не менее в средствах массовой информации достаточно сообщений, которые свидетельствуют, что в целом ряде государств, обладающих соответствующими технологиями, и особенно в США, ведутся интенсивные работы по созданию лазерного оружия. При этом основные усилия сосредоточены на твердотельных, химических, рентгеновских лазерах с ядерной накачкой, со свободными электронами и некоторых других.
Твердотельный лазер, для них в качестве активного вещества используют рубины или некоторые другие кристаллы, рассматривается специалистами США в качестве одного из перспективных типов генераторов для боевых систем. При этом, однако, указывается, что твердотельные лазеры требуют слишком много энергии для накачки и охлаждения, чтобы быть использованными на поле боя. В этом плане более привлекательными выглядят жидкостные лазеры. В качестве активного вещества они используют редкоземельные элементы, которые растворяют в некоторых жидкостях. Жидкостью можно заполнять любой объем. Это облегчает охлаждение активного вещества путем циркуляции самой жидкости в приборе. Вместе с тем мощности таких лазеров невелики.
Агентство по оборонным разработкам министерства обороны США решило объединить технологии жидкостного и твердотельного лазеров. Лазеры с жидким активным веществом способны испускать непрерывный луч, не требуя больших систем охлаждения, в то время как лазеры на основе кристаллов обладают большей мощностью, но во избежание перегрева луч пульсирует. «Мы объединили высокую «энергетическую плотность» твердотельного лазера с «термоустойчивостью» жидкого лазера», - заявил руководитель проекта Дон Вудбери. Таким образом получается непрерывный лазерный луч значительной мощности, не требующий больших систем охлаждения. В Пентагоне рассчитывают, что благодаря этому объединению ученые создадут компактный боевой лазер мощностью 150 киловатт уже в 2007 году.
Еще больший поток энергии в луче удалось достичь при помощи химического лазера, для получения которого используется реакция соединения водорода с фтором. Всего из одного грамма реагентов при этой реакции выделяется около 500 Дж энергии. Если заменить обычный водород на дейтерий, то спектр полученного луча окажется в «окне прозрачности» атмосферы и такую «пушку» можно будет применять даже для поражения укрепленных наземных объектов. Однако эксплуатировать боевую систему, работающую на такой гремучей смеси (фтор реагирует даже со стеклом, а выделяемый фтороводород является одной из сильнейших кислот), непросто. Кроме того, химические лазеры требуют, чтобы рядом находился целый склад химических веществ, используемых в качестве топлива.
В 2003 году специалисты управления научных исследований ВМС США и национальной лаборатории ускорителей имени Томаса Джефферсона разработали лазер на свободных электронах FEL (free-electron laser). Для его получения пучок высокоэнергетических электронов пропускают через специальное устройство («магнитную гребенку»), которое заставляет их совершать синусоидальные колебания с заданной частотой. Меняя параметры «магнитной гребенки», можно на выходе получать излучение с разной длиной волны. Коэффициент полезного действия у такого лазера значительно больше, чем у других типов, - порядка 20 процентов. Как показывают эксперименты, это устройство умеет «настраиваться» на излучение электромагнитных волн инфракрасного, оптического диапазонов, а также волн сверхвысокой частоты. К тому же у него есть еще одно свойство, которого нет ни у одного подобного устройства в мире: он может излучать предельно короткие световые импульсы продолжительностью менее одной триллионной секунды. «FEL превзошел все наши ожидания», - заявил представитель управления научных исследований ВМС США Гил Граф. По его словам, морское командование рассматривает возможное применение лазерной установки, в первую очередь для создания активной боезащиты надводных кораблей.
В последние годы интенсивные работы идут по созданию боевых систем на основе рентгеновских лазеров. Их воздействие на объект отличается от уже рассмотренных лазеров, поражающих цели лучами за счет теплового воздействия. При применении рентгеновского лазера цель оказывается под ударным импульсивным воздействием, приводящим к испарению материала ее поверхности. Такие лазеры отличаются большой энергией рентгеновского излучения (в 100 – 10.000 тыс. раз выше, чем у других лазеров) и способностью проникать сквозь значительные толщи различных материалов.
В поиске новых источников энергии, которые были бы не менее мощными, чем ядерные, обладали точностью лазерного оружия и легко управлялись в широком диапазоне значений энергии, ученые пришли к технологии искусственного распада протона. При нем освобождается почти в сотню раз больше энергии, чем даже при термоядерном взрыве. В отличие от реакции ядерного деления протонные распады не требуют каких-либо критических значений масс или фиксированных значений других параметров. Важна лишь определенная их комбинация. Это позволяет создать генераторы любой мощности и использовать их различные модификации для широкого спектра видов оружия. От индивидуального излучателя до стратегических планетарных комплексов, энергетических установок и транспортных систем.
С космоса и по космосу
Если говорить о конкретных боевых лазерных системах, то, например, в США приоритетным направлением в их создании стала разработка лазерных комплексов в интересах противовоздушной, противоракетной и противокосмической обороны. При этом предусматривается создание таких систем, которые можно было бы применять на тактическом, оперативно-тактическом и глобально-стратегическом уровнях.
Первый действующий прототип боевого лазера (тактический высокоэнергетический лазер - Tactical High-Energy Laser - THEL) был создан американо-израильской исследовательской группой и прошел успешные испытания в 2000 году на полигоне Уайт-Сэндз в Нью-Мексико. В ходе испытания THEL (фото 1) смог уничтожить несколько десятков ракет, запущенных с расстояния примерно 10 км. Он одновременно вел 15 целей и потратил на уничтожение каждой из них не более 5 секунд. При этом, однако, THEL мог без перезарядки произвести всего пару выстрелов по 3 тыс. долларов каждый. Три основных компонента этой системы - химический дейтерий-фторный лазер, оптическая система управления лазерным лучом и пункт боевого управления и связи - были разработаны отдельно, не интегрированы в единый комплекс. В результате получилась подвижная боевая система размером в 6 огромных туристических автобусов, что представляет собой слишком лакомую цель для противника. Предполагается, что после доработки и совершенствования системы, создания ее в мобильном варианте она сможет решать задачи ПВО (ПРО) на тактическом уровне и защищать войска США и союзников от ракет «земля - земля» и крылатых ракет.
Тем временем на базе THEL корпорация «Нортроп – Грамман» разработала лазерный комплекс Skyguard. Он превосходит своего предшественника по мощности и дальности действия и, по словам разработчиков, может использоваться для защиты важных военных и гражданских объектов, а также расположения войск от обстрела баллистическими ракетами малой дальности, снарядами реактивных систем залпового огня (типа «Град» или MRLS), артиллерийскими снарядами и минометными минами. Одиночный комплекс Skyguard может прикрыть территорию до 10 километров в диаметре.
Для второго уровня - оперативно-тактического - разрабатывается боевая лазерная система воздушного базирования ABL (Airborne Laser). Натурные испытания по программе авиационного лазера начнутся в 2008 году. Самолет «Боинг-747» (рис. 2) с мощным химическим лазером, установленным в носовой части лайнера, начнет пробные стрельбы по ракетам-мишеням. Исследования ведутся под руководством агентства противоракетной обороны США. Разработчики рассчитывают, что лазерная установка будет использоваться для уничтожения баллистических ракет во время старта, когда они наиболее уязвимы, а также на траектории на дальностях от 300 до 500 км. Для этого самолет с бортовым лазером будет барражировать вблизи от предполагаемого района пуска ракет. Инфракрасные датчики обнаружат ракетный пуск и дадут сигнал на компьютер, который повернет башенку с лазером в нужную сторону. Сначала должны сработать два небольших твердотельных лазера, один из которых будет служить для целеуказания, а второй - рассчитывать оптическое искажение с учетом атмосферных изменений. Затем основной лазер поразит ракету.
Бюджет программы ABL в 2006 году составил 471,6 млн. долларов. На эти деньги предполагалось провести испытания систем корректировки и устойчивости целеуказания лазера, а также наземные испытания с тем, чтобы подготовить стрельбы в воздухе. И в конце октября корпорация «Боинг» представила заказчикам из Пентагона модифицированный самолет «Боинг-747-400F», вооруженный высокоэнергетической лазерной установкой, способной уничтожать баллистические ракеты сразу после их запуска. Как сообщает Рейтер, наземные испытания системы прошли успешно, и в 2008 году запланирован первый учебно-боевой перехват баллистической ракеты в воздухе. А ориентировочно к 2012 - 2015 годам ВВС США планируют иметь в составе сил ПВО (ПРО) на ТВД до 7-8 самолетов с системой ABL. Считается, что она может быть также использована для уничтожения других стратегических и тактических целей.
Третий уровень - глобально-стратегический - космическая лазерная система (программа SBL). Ее разработка идет по нескольким направлениям. Еще в 1997 году в США был проведен эксперимент по облучению лазером экспериментального спутника ВВС MSTI-3, находящегося на высоте 420 км. Испытания показали, что энергии небольшого химического лазера мощностью 30 Вт, который использовался для наведения мощной лазерной установки MIRACL, вполне достаточно для ослепления оптической аппаратуры спутников съемки Земли.
Сегодня же специалисты компании «Боинг» и ВВС ведут работы по проекту ARMS (Aerospace Relay Mirror System - воздушно-космическая релейная зеркальная система). Согласно ему новое оружие будет представлять сверхмощные стационарные лазеры наземного или морского базирования и систему зеркал, расположенную на дирижаблях и беспилотных самолетах, а в перспективе и на космических спутниках. Это позволит ему наносить удар по любым целям на земле и околоземном пространстве практически мгновенно. Принимающее зеркало будет собирать свет и затем перенаправлять его через специальную фокусирующую систему, которая определяет помехи, возникшие в атмосфере, и корректирует сигнал. После корректировки второе зеркало посылает луч на заданную цель. Лазерная установка при этом должна иметь мощность 1001000 кВт.
Проведенные в этом году испытания на базе ВВС США Киртленд в штате Нью-Мексико подтвердили боеспособность новой системы. В их ходе были использованы лазер мощностью 1 кВт и отражающая система, расположенная на расстоянии 3 км. Система состояла из двух зеркал шириной 75 см, находящихся близко друг к другу. Они были подвешены на высоте 30 м с помощью крана. Лазерный луч успешно был перенаправлен и попал в цель.
Судя по сообщениям, в Пентагоне рассматривается также проект создания сети спутников (космических платформ), оснащенных лазерными «орудиями» (рис. 3). Его разработчики утверждают, что эти «орудия» смогут уничтожать широкую гамму целей на всей земной поверхности и в околоземном пространстве. Существуют и другие проекты, что позволяет сделать вывод, что в США пока нет единого плана по созданию боевых лазерных систем глобально-стратегического уровня. Тем не менее Пентагон намерен провести натуральные испытания таких лазеров начиная с 2012 года, а прием их на вооружение планируется на 2020 год.
В боевых порядках пехоты
Ну а что же на поле боя? Будут ли противоборствующие стороны поражать друг друга «лучами смерти» в наземных операциях? «Безусловно, - заявил по этому поводу специалист Пентагона в области лазерного оружия Шелдон Мет. - Да, сегодня химические лазеры высокой мощности нуждаются в поддержке чуть ли не целого химзавода, а твердотельные требуют слишком много энергии для накачки и охлаждения, чтобы быть использованными на поле боя. Но в перспективе боевой лазер появится в возимом варианте - для установки на бронетранспортере - и даже в носимом варианте - в заплечном мешке». Шелдон Мет не называет сроки. Однако его коллега Дон Вудбери уверен, что это произойдет уже через два года, когда будет создан первый боевой лазер для использования в наземных операциях. Весить он должен не более 750 кг, а по размерам соответствовать крупному холодильнику. Это позволит устанавливать его на бронетранспортер. А в последующем габариты этого лазера будут только уменьшаться.
«Поле боя поменяется, - говорит сотрудник лаборатории Ливермора Томас Макгранн, занимающийся симуляцией боевых действий с применением лазеров. – Когда сегодня враг чем-то стреляет в меня, я это сбиваю. С любого расстояния от одного до трех километров я смогу подавить огонь. Когда он отправляет свои беспилотные летательные аппараты, в которые очень трудно попасть, я сбиваю и их. Пехотинец говорит, что его обстреливают с поросшего лесом склона холма. Тогда мы просто устраиваем там пожар. Но лазерный луч засечь практически невозможно, а главное – он позволяет нанести мгновенный удар с почти 100-процентной гарантией поражения цели». Лазерный луч можно использовать для выведения из строя электроники в боевой технике или взрывного устройства, а также личного состава противника. Например, для парализации произвольно сокращающихся мышц рук и ног. При этом мышцы сердца и легких, работающие на другой частоте, продолжают нормально функционировать.
Конечно же, ожидать, что солдаты будут бегать с лазерами наперевес, как это происходит в фантастических фильмах, не приходится. «Скорее всего, это будет исключительно дальнобойная, сверхточная снайперская винтовка, - полагает американский специалист по вооружениям Джон Пайк. – С ее помощью из-за укрытия и можно будет добиться желаемого результата». Но ее появление на вооружении – далекая перспектива. В ближайшее же время в американские войска в Ираке и Афганистане поступит лазерное устройство, которое сможет временно ослеплять водителей, игнорирующих предупреждения на пропускных пунктах. По мнению представителей Пентагона, это должно снизить количество потерь среди местных жителей, которые не обращали внимания на предупреждающие сигналы и попадали под огонь американских солдат. Для этого на карабинах M-4 будет помещено трубообразное устройство длиной 27 мм, способное выдавать луч лазера. Он будет временно ослеплять водителей, не приводя их к полной потери зрения. Не исключено, что в последующем это устройство в зависимости от мощности будет применяться и против механика-водителя вражеской бронетехники, снайпера, пилота низколетящего штурмового вертолета. А чтобы не поразить своего, фирма «Моторола» создает устройство CIDDS. Оно позволяет отличать в боевых условиях своих от чужих на расстоянии 1 км. Одна часть CIDDS крепится на шлеме, вторая - на винтовке. Когда лазерный луч, генерируемый вторым блоком, контактирует с модулем CIDDS на шлеме другого солдата, этот модуль посылает шифрованный радиосигнал о том, кто обнаружен, – свой или чужой. Процесс опознания занимает около 1 сек.
В боевых порядках американских войск могут скоро появиться и боевые лазеры, установленные на тягачах, бронетранспортерах и самолетах. Так, в октябре нынешнего года компания «Боинг» приступила к испытаниям так называемого передового тактического лазера (Advanced Tactical Laser – ATL). Этот высокоактивный химический лазер, установленный на самолете C-130H, сможет, как полагают его разработчики, уничтожать или наносить ущерб целям в городских районах практически без сопутствующего урона. Дальность действия ATL, как ожидается, будет составлять более 20 километров. Разрабатывается вариант этого лазера и для его установки на «Хаммерах».
Корпорация «Дженерал дайнэмикс» будет производить для армии США дистанционно управляемую машину разминирования Thor (фото 2), оснащенную лазерной установкой. Дистанционно управляемая гусеничная машина разработана израильской компанией «Рафаэль». Thor вооружен крупнокалиберным пулеметом M2HB и лазерной установкой, предназначенной для уничтожения неразорвавшихся боеприпасов и самодельных взрывных устройств. Лазерная установка позволяет уничтожать неразорвавшиеся снаряды, мины и взрывные устройства без детонации, вызывая выгорание взрывчатого вещества. Пулемет позволяет уничтожать снаряды и взрывчатые устройства в массивных корпусах, не поддающихся воздействию лазера. Thor оснащен оптико-электронной системой, позволяющей обнаруживать снаряды и мины независимо от погоды и времени суток. Характеристики машины позволяют использовать ее для сопровождения конвоев, прорыва укрепленных оборонительных позиций, расчистки местности. Бронирование машины позволяет выдерживать огонь стрелкового оружия и малокалиберной зенитной артиллерии.
Нет необходимости особо подчеркивать, что эффективность применения оружия во многом определяют правильное целеуказание и прицеливание. И здесь лазерные устройства получили самое широкое распространение. Это прежде всего использование в стрелковом оружии прицелов с так называемой «светящейся прицельной точкой». Суть действия состоит в том, что точка прицеливания указывается лучом света, формируемого посторонним источником, который связан с механизмом прицела и может учитывать поправки по направлению и дальности. Причем в самых совершенных моделях расчет поправок проводят электронные баллистические вычислители с датчиками температуры, давления и других параметров. Есть еще лазерные осветители, указатели и дальномеры. Первые представляют собой мощные точечные источники света часто, закрепляемые на оружии и имеющие дальность действия до 300 метров. Лазерные дальномеры только сейчас приходят в ручное стрелковое оружие, хотя на тяжелом вооружении они появились несколько лет назад.
Наконец, целеуказатели. Их можно монтировать отдельно от прицелов либо в комбинации с ними и с их помощью выбирать точку прицеливания непосредственно на цели. Есть и комплексные лазерные целеуказатели. Такие как AN/PEQ-1B. Они вскоре поступят на вооружение подразделений спецназначения ВМС США и корпуса морской пехоты, отвечающих за целеуказание для самолетов морской авиации. Аппарат отличается небольшим весом - 5,5 килограмма и компактными размерами (26х30х13 сантиметров). Целеуказатель может работать как в ручном, так и в автоматическом режиме, подсвечивая цели в секторе 45 градусов. Аппарат измеряет расстояние до целей в диапазоне от 200 до 10.000 метров с точностью плюс-минус пять метров. Разрешающая способность приемника отраженного луча составляет 50 метров. В режиме подсветки цели аппарат создает лазерное «пятно» небольшого размера (на расстоянии пять километров - 2,3х2,3 метра), обеспечивая возможность точечного поражения малоразмерных и высокозащищенных целей.
Здесь речь шла прежде всего о создании лазерного оружия в США. Но и другие страны наращивают усилия в этой сфере. Среди тех, кто уже добился определенных успехов в создании таких вооружений, называют Израиль, Францию, Китай. Так, по данным издания DefenseNews, Китай уже несколько раз облучал американские спутники видовой разведки серии KeyHole во время их пролета над территорией страны с помощью мощной лазерной наземной установки. О том, что Китай обладает лазерным оружием, говорится и в ежегодном докладе Пентагона конгрессу США о военной мощи КНР в 2006 году. Как там записано, «по меньшей мере одной из противоспутниковых систем, вероятно, является наземная лазерная установка, предназначенная для повреждения или ослепления спутников».
Кстати, еще в 1960-е годы Советский Союз в местечке Сары-Шаган создал огромную лазерную установку «Терра-3». Она была способна за сотни километров определить не только дальность до цели, но и ее размеры, форму, траекторию движения. На «Терре» был создан локатор, который мог зондировать космическое пространство. В 1984 году ученые предлагали «пощупать» им американский корабль «Шаттл» на орбите. Но высшее политическое руководство испугалось возможного шума. США в то время лишь пытались сконструировать систему по получению боевого лазерного луча.

На снимках: «Лучи смерти». Картина Джулио Париджи (1571-1635).
На испытаниях THEL.Фото 1.
Дистанционно управляемая машина разминирования Thor.Фото 2.
Проект «Боинга-747» с химическим лазером. Рис. 2.
Проект космических платформ, оснащенных лазерными «орудиями». Рис. 3.