Положения хромосомной теории т моргана. Хромосомная теория наследственности

Хромосомная теория наследственности сформулирована в 1911-1926 гг. Т. Х. Морганом по результатам своих исследований. С ее помощью выяснено материальную основу законов наследственности, установленных Г. Менделем, и то, почему в определенных случаях наследования тех или иных признаков от них отклоняется.

Основные положения

Основные положения хромосомной теории наследственности такие:

  • гены расположены в хромосомах в линейном порядке;
  • различные хромосомы имеют неодинаковые наборы генов, т.е. каждая из негомологичных хромосом имеет свой уникальный набор генов;
  • каждый ген занимает в хромосоме определенный участок; аллельные гены занимают в гомологичных хромосомах одинаковые участки;
  • все гены одной хромосомы образуют группу сцепления, благодаря чему некоторые признаки наследуются сцеплено; сила сцепления между двумя генами, расположенными в одной хромосоме, обратно пропорциональна расстоянию между ними;
  • сцепления между генами одной группы нарушается вследствие обмена участками гомологичных хромосом в профазе первого мейотического деления (процесс кроссинговера)
  • каждый биологический вид характеризуется определенным набором хромосом (кариотипа) — количеством и особенностями строения отдельных хромосом.

Хромосомная теория наследственности, теория, согласно которой хромосомы, заключенные в ядре клетки, являются носителями генов и является материальной основой наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

История

Хромосомная теория наследственности возникла в начале 20 века на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа.

В 1902 году В. Сэттон в США, обратил внимание на параллелизм в поведении хромосом и Менделю т.н. «Наследственных факторов», и Т. Бовери в Германии выдвинули хромосомную гипотезу наследственности, согласно которой наследственные факторы (название впоследствии генами) Менделя локализованы в хромосомах. Первые подтверждения этой гипотезы были получены при изучении генетического механизма определения пола у животных, когда было выяснено, что в основе этого механизма лежит распределение половых хромосом среди потомков. Дальнейшее обоснование Х. т принадлежит американскому генетику Т. Х. Моргану, который отметил, что передача некоторых генов (например, гена, обусловливающего белоглазие у самок дрозофилы при скрещивании с красноглазыми самцами) связана с передачей половой Х-хромосомы, то есть наследуются признаки, сцепленные с полом (у человека известно несколько десятков таких признаков, в том числе некоторые наследственные дефекты — дальтонизм, гемофилия и др.).

Доказательство теории было получено в 1913 американским генетиком К.. Бриджесом, открывший нерасхождения хромосом в процессе мейоза у самок дрозофилы и отметил, что нарушения в распределении половых хромосом сопровождается изменениями в наследовании признаков, сцепленных с полом.

С развитием теории было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов; признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые рекомбинантные, их сочетание) было подробно исследовано Морганом и его сотрудниками (А. Г. Стертевантом и др.) И послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящихся у родителей в сочетаниях и, в мейозе в гетерозиготной формы ® могут меняться местами, в результате чего рядом с гаметами АВ и ab образуются гаметы Ab и аВ. Подобные перекомбинации происходят благодаря разрывам гомологичных хромосом на участке между генами и дальнейшем соединению разорванных концов в новом сочетании: Реальность этого процесса, названного пересечением хромосом, или кроссинговером, была доказана в 1933 ему, ученым К. Штерномв опытах с дрозофилой и американскими учеными Х. Крейтономи Б. Мак-Клинток — с кукурузой. Чем дальше друг от друга расположены сцепленные гены, тем больше вероятность кроссинговера между ними. Зависимость частоты кроссинговера от расстояний между сцепленными генами была использована для построения генетических карт хромосом. В 30-х гг. 20 в Ф. Добржанский показал, что порядок размещения генов на генетических и цитологических картах хромосом совпадает.

Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации. Однако открытие в 1925 советскими учёными Г. А. Надсоном и Г. С. Филипповым, а в 1927 американским ученым Р.Меллером влияния рентгеновских лучей на возникновение наследственных изменений (мутаций) у дрозофилы, а также применение рентгеновских лучей для ускорения мутационного процесса у дрозофилы позволили советским ученым А. С. Серебровскому, Н. П. Дубинину и др. сформулировать 1928-30 представлений о делимости гена на более мелкие единицы, расположенные в линейной последовательности и способные к мутационных изменений. В 1957 этих представлений были доведены работой американского ученого С. Бензера с бактериофагом Т4. Использование рентгеновских лучей для стимулирования хромосомных перестроек позволило Н. П. Дубинину и Б. Н. Сидорову обнаружить в 1934 эффект положения гена (открыт в 1925 Стертевантом), то есть зависимость проявления гена от места расположения его на хромосоме. Возникло представление о единстве дискретности и непрерывности в строении хромосомы.

Хромосомная теория наследственности развивается в направлении углубления знаний о универсальных носителей наследственной информации — молекулы дезоксирибонуклеиновой кислоты (ДНК). Установлено, что непрерывная последовательность пуриновых и пиримидиновых оснований вдоль цепи ДНК (дезоксирибонуклеиновая кислота) образует гены, межгенных интервалы, знаки начала и конца считывания информации в пределах гена; определяет наследственный характер синтеза специфических белков клетки и, следовательно, наследственный характер обмена веществ. ДНК (дезоксирибонуклеиновая кислота) составляет материальную основу группы сцепления у бактерий и многих вирусов (у некоторых вирусов носителем наследственной информации является рибонуклеиновая кислота) молекулы ДНК (дезоксирибонуклеиновая кислота), входящий в состав митохондрий, пластид и др. органоидов клетки, служат материальными носителями цитоплазматической наследственности.

Х. т. Н., Объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в с.-х. (сельскохозяйственный) науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения Х. т позволяют более рационально вести с.-х. (сельскохозяйственный) производство. Так, явление сцепленного с полом наследования ряда признаков в с.-х. (сельскохозяйственный) животных позволило до изобретения методов искусственного регулирования пола у тутового шелкопряда выбраковывать коконы менее производительной пола, к разработке способа разделения цыплят по полу исследованием клоаки — отбраковывать петушков и т. п. Важнейшее значение для повышения урожайности многих с.-х. (сельскохозяйственный) культур имеет использование полиплоидии. На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека.

Видео по теме

Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

В экспериментах он использовал плодовую мушку-дрозо-филу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

Морган и его ученики установили следующее:

1. Признаки и свойства организма определяются генами. Гены локализованы в хромосомах и расположены там линейно на определенном расстоянии друг от друга.

2. Гены, расположенные в одной хромосоме, наследуются совместно или сцеплено, образуюя группы сцепления. Число групп сцепления равно гаплоидному набору хромосом: 4- у мушки – дрозофилы, 23 - у человека.

3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер) во время мейоза; в результате кроссин-говера возникают гаметы, хромосомы которых содержат новые комбинации генов.

4. По частоте кроссинговера можно судить о расстоянии и порядке расположения генов в хромосоме. Чем расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.

В 1902 г., вскоре после вторичного открытия законов Менделя, "два генетика - А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образования половых клеток и оплодотворения и насле-: дованием признаков организма. Они высказали ряд предположений, согласно которым: 1) хромосомы являются носителями наследственных факторов (термин «ген» был введен в обиход только в 1909 г. В.Иогансеном), 2) каждая пара факторов локализована в паре гомологичных хромосом, 3) каждая хромосома несет только по одному специфическому, уникальному фактору, 4) каждая хромосома содержит множество различающихся факторов, посколъку число признаков у любого организма гораздо больше числа его хромосом. Эти идеи заложили основу «хромосомной теории наследственности».

Менделевский закон расщепления можно объяснить особенностями поведения хромосом во время мейоза. При образовании гамет распределение аллелей одной пары гомологичных хромосом происходит независимо от распределения других пар аллелей. Поскольку гаплоидное число хромосом в клетках человека равно 23, возможное число комбинаций в мужских или женских гаметах составляет 223.

Сцепление генов

В 1906 г. В. Бэтсон и Р. Пеннет, скрещивая две расы душистого горошка, различавшихся по двум парам признаков, не обнаружили в F2 расщепления в отношении 9:3:3:1. Признаки оставались в исходных родительских комбинациях. Они назвали это явление притяжением. Генетический анализ, проведенный на плодовой мушке дрозофиле Т. Г. Морганом и его учениками, показал, что основой притяжения генов являются хромосомы. Все гены, находящиеся в одной хромосоме, связаны между собой материальным субстратом хромосомы и в силу этого попадают в одну гамету. Гены, расположенные в одной хромосоме и наследующиеся целой группой, получили название группы сцепления. Явление совместного наследования генов, ограничивающее их свободное комбинирование в мейозе, назвали сцеплением генов.

В одном из экспериментов Т. Г. Морган провел несколько серий возвратного скрещивания между дрозофилой с серым телом и длинными крыльями и дрозофилой, у которой были черное тело и короткие крылья. Серое тело и длинные крылья доминируют. Во рсех сериях Морган получал одни и те же результаты: 41,5% потомков имели серое тело, длинные крылья; 41,5% - черное тело, короткие крылья; 8,5% - серое тело, короткие крылья и 8,5% - черное тело, длинные крылья. Если бы аллели, контролирующие развитие этих признаков, находились в одной и той же паре хромосом (т.е. были полностью сцеплены), в потомстве было бы 50 % мух с серым телом, длинными крыльями и 50% - с черным телом, короткими крыльями. Если бы гены, контролирующие эти признаки, лежали в разных хромосомах (т.е. не были сцеплены), они должны были бы распределяться независимо и давать 25% потомков с серым телом, длинными крыльями; 25% - с серым телом, короткими крыльями; 25% - с черным телом, длинными крыльями и 25% - с черным телом, короткими крыльями. Большинство потомков (83%) повторило исходные родительские фенотипы, что говорило о сцеплении изученных генов. Однако, помимо мух с родительскими фенотипами, появились 17% особей с новыми сочетаниями признаков, свидетельствовавшими о неполном сцеплении. Эти новые фенотипы были названы рекомбинантными, а потомки - рекомбинантами. Появление рекомбинантных сочетаний аллелей у 17% потомков объясняется обменом между гомологичными хромосомами во время мейоза. Это явление получило название кроссинговера. Морган предположил, что кроссинговер (обмен аллелями) происходит в результате разрыва и обмена участками гомологичных хромосом во время образования хиазм. Образование хиазм, которые можно непосредственно наблюдать под микроскопом, является цитологическим подтверждением кроссинговера (как генетического явления).

Процент рекомбинантных потомков, от опыта к опыту, для исследованных признаков оставался постоянной величиной. На этом основании А. Стертевант (ученик и сотрудник Моргана) высказал предположение о линейном расположении генов по хромосоме и показал, что величина кроссинговера (выражаемая в процентах) является функцией расстояния между генами. Чем больше расстояние, тем чаще образуются хиазмы, а следовательно, выше процент рекомбинантов, и, наоборот, чем меньше расстояние между генами, тем меньше процент рекомбинантных потомков.

Таким образом, относительные расстояния между генами можно измерять в процентах кроссинговера между ними. Принято считать, что 1% кроссинговера равен 1 сантиморганиде (в честь Т.Г.Моргана).

Хромосомные карты

Т.Г.Морган и его сотрудники были первыми, кто использовал явление кроссинговера для составления генетических карт хромосом. Генетическая карта - это схема линейного расположения генов, локализованных в одной группе сцепления. Карта хромосомы строится путем перевода частоты рекомбинаций между генами в относительные расстояния на хромосоме, выраженные в морганидах. Например, если частота рекомбинаций между генами А и Б равна2,4%, то это свидетельствует, что они расположены на одной и той же хромосоме на расстоянии 2,4 сантиморганиды друг от друга. Если частота рекомбинаций между генами Б и В составляет 6,6%, то они разделены расстоянием 6,6 сантиморганид. Однако приведенные данные не позволяют определить точную последовательность расположения генов на хромосоме (рис. III.10), и только оценив расстояние между генами А и В (в данном случае 9%), можно уверенно сказать, что ген Б должен находиться между генами А и В.

Рис. III. 10.

Таким образом, с помощью кроссинговера можно определить группу сцепления и места расположения генов относительно друг друга. Факт сцепления свидетельствует, что гены находятся в одной хромосоме. Однако свободное их сочетание еще не доказывает, что они расположены в разных хромосомах. Если частота рекомбинаций составляет 50%, то результаты анализа фенотипа потомков не будут отличаться от результатов анализа расщепления при независимом наследовании генов (см. гл. V). Это может происходить, если исследованные гены расположены на значительном расстоянии друг от друга. Для обозначения генов, находящихся в одной и той же хромосоме, но, возможно, и не сцепленных между собой, используется понятие синтеиии (от греч. syn - вместе + tainia - лента). Понятие синтении отражает, таким образом, материальную непрерывность хромосомы как реального материального объекта и не несет сегрегационного смысла.

Долгое время полагали, что число групп сцеплений у человека равно гаплоидному набору хромосом и составляет 23 группы. В настоящее время доказано, что у человека имеется 25 групп сцепления. 22 группы отождествляют с числом пар аутосомных хромосом (22 пары), Х-хромосома и Y-хромосома рассматриваются как две независимые группы сцепления, и гены, локализованные в ДНК митохондрий, формируют 25-ю группу сцепления.

К настоящему времени для человека получены подробные цитологические карты всех хромосом, включая хромосому митохондрий. В качестве примера приведена карта 1-й (рис. III.11) и X-хромосомы (рис. III.12) человека. Установлена (картирована) точная хромосомная локализация более чем для 6 тысяч генов, что составляет только около 15 % от общего числа генов в геноме. В настоящее время хромосомная теория наследственности, сохраняя и дополняя основные классические представления, отражает современные знания о молекулярной организации хромосом, их функционировании как единой материальной структуры в системе целостного генотипа.

Хромосомная теория наследственности - теория, согласно которой передача наследственной информации в ряду поколений связана с передачей хромосом, в которых в определённой и линейной последовательности расположены гены. Эта теория сформулирована в начале XX века, основной вклад в её создание внесли американский цитолог У. Сеттон, немецкий эмбриолог Т. Бовери и американский генетик Т. Морган.

В 1902-1903 годах У. Сеттон и Т. Бовери независимо друг от друга выявили параллелизм в поведении менделевских факторов наследственности (генов) и хромосом . Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Экспериментальное доказательство локализации генов в хромосомах было получено позднее Т. Морганом и его сотрудниками, работавшими с плодовой мушкой Drosophila melanogaster. Начиная с 1911 года, эта группа опытным путём доказала:

  • что гены располагаются в хромосомах линейно;
  • что находящиеся на одной хромосоме гены наследуются сцепленно;
  • что сцепленное наследование может нарушаться за счёт кроссинговера.

Начальным этапом создания хромосомной теории наследственности можно считать первые описания хромосом во время деления соматических клеток, сделанных во второй половине XIX века в работах И.Д. Чистякова (1873), Э. Страсбургера (1875) и О. Бючли (1876). Термина «хромосома» тогда ещё не существовало, и вместо него говорили о «сегментах», на которые распадается хроматиновый клубок, или о «хроматиновых элементах». Термин «хромосома» был предложен позднее Г. Вальдейером.

Параллельно с изучением соматических митозов шло и изучение процесса оплодотворения, как в животном, так и в растительном царстве. Слияние семенного ядра с яйцевым впервые наблюдал у иглокожих О. Хертвиг (1876), а среди растений у лилейных Страсбургер (1884). Именно на основании этих наблюдений в 1884 году оба они пришли к выводу, что клеточное ядро является носителем наследственных свойств организма .

Центр внимания с ядра, как целого, на его отдельные хромосомы был перенесён лишь после того, как появилась чрезвычайно важная для того времени работа Э. ван Бенедена (1883). Ему при изучении процесса оплодотворения у аскариды, имеющей очень малое число хромосом - всего 4 в соматических клетках, удалось подметить, что хромосомы в первом делении оплодотворённого яйца происходят наполовину из ядра сперматозоида и наполовину - из ядра яйцеклетки. Таким образом:

  • во-первых, был открыт факт, что половые клетки имеют вдвое меньшее количество хромосом по сравнению с соматическими клетками,
  • а во-вторых, был впервые поставлен вопрос о хромосомах, как особых постоянных сущностях в клетке.

Следующий этап связан с развитием концепции индивидуальности хромосом. Одним из первых шагов было установление того, что соматические клетки разных тканей одного и того же организма обладают одинаковым числом хромосом. Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

В экспериментах он использовал плодовую мушку-дрозофилу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

Морган и его ученики установили следующее:

  • Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно.
  • Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей.
  • Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов.
  • Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты . Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

  • Гены находятся в хромосомах.
  • Гены расположены в хромосоме в линейной последовательности.
  • Различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
  • Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определенным набором хромосом - кариотипом.

Работы Моргана заложили основы хромосомной теории наследственности, они показали, что ограничения в свободной комбинаторике некоторых генов обусловлены расположением этих генов в одной хромосоме и их физическим сцеплением.

Морганом было установлено, что сцепление генов, расположенных в одной хромосоме, не является абсолютным. Во время мейоза хромосомы одной пары могут обмениваться гомологичными участками между собой с помощью процесса, который называется кроссинговером. Чем дальше друг от друга расположены гены в хромосоме, тем чаще они разделяются кроссинговером. На основе этого феномена была предложена мера силы сцепления генов - процент кроссинговера - и построены первые генетические карты хромосом для разных видов дрозофилы.

В качестве объекта генетического анализа была выбрана плодовая мушка дрозофила и Морган изучал наследование у нее разных признаков.

Скрестив гомозиготную самку с серыми телом и длинными крыльями (домин), с гомозиготным чернокрылым короткокрылым самцом, в F1 – однообразие (серое тело, длинные крылья)

Оказалось, что результаты будут разные в зависимости от пола гибрида.

Если гибридным был самец, то в потомстве получалось 2 фенотипических класса полностью повторяющих признаки родителей.

Если гибридной была самка, то получалось 4 фенотипических классов потомком в неравных пропорциях. Большую часть потомства (83%) составляют потомки с родительскими признаками, меньшую (17%) – особи с новыми комбинациями признаков.

Морган сделал вывод, что сцепление может быть неполным, где группа сцепления нарушается кроссинговером.

Необычность процентного соотношения у потомков объясняется тем, что кроссинговер происходит не всегда, частота кроссинговера зависит от расстояния между генами – чем больше расстояние, тем меньше силы сцепления между генами, тем чаще кроссинговер.

Гаметы, в которые попали хромосомы, не прошедшие кроссинговер, называются некроссоверные.

Если в гаметах хромосомы претерпевшие кроссинговер – кроссоверные.

6. Основные положения хромосомной теории наследственности

1. Гены расположены в хромосомах линейно в определенных участках – локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом.

2. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе или сцеплено. Число групп сцепления = числу хромосом в гаплоидном наборе.

3. Между гомологичными хромосомами возможен кроссинговер, нарушающий сцепление

4. процесс кроссинговера прямо пропорционален расстоянию между генами.

1% кроссинговера = 1 сантиморганида

7. Понятие о цитоплазматической наследственности

Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития.

Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования был впервые описан в 1908 г. К. Корренсом в отношении признака пестрых листьев у некоторых растений.